These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32245424)

  • 1. Altered Achilles tendon morphology in individuals with chronic post-stroke hemiparesis: a case report.
    Liang JN; Ho KY
    BMC Med Imaging; 2020 Apr; 20(1):34. PubMed ID: 32245424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow Walking in Individuals with Chronic Post-Stroke Hemiparesis: Speed Mediated Effects of Gait Kinetics and Ankle Kinematics.
    Liang JN; Ho KY; Lee YJ; Ackley C; Aki K; Arias J; Trinh J
    Brain Sci; 2021 Mar; 11(3):. PubMed ID: 33805603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of augmented somatosensory input using vibratory insoles to improve walking in individuals with chronic post-stroke hemiparesis.
    Liang JN; Ho KY; Hung V; Reilly A; Wood R; Yuskov N; Lee YJ
    Gait Posture; 2021 May; 86():77-82. PubMed ID: 33711614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow and faster post-stroke walkers have a different trunk progression and braking impulse during gait.
    Duclos NC; Duclos C; Nadeau S
    Gait Posture; 2019 Feb; 68():483-487. PubMed ID: 30616177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle contributions to support during gait in an individual with post-stroke hemiparesis.
    Higginson JS; Zajac FE; Neptune RR; Kautz SA; Delp SL
    J Biomech; 2006; 39(10):1769-77. PubMed ID: 16046223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review.
    Roelker SA; Bowden MG; Kautz SA; Neptune RR
    Gait Posture; 2019 Feb; 68():6-14. PubMed ID: 30408710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Presence of a Paretic Propulsion Reserve During Gait in Individuals Following Stroke.
    Lewek MD; Raiti C; Doty A
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1011-1019. PubMed ID: 30558525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking.
    Turns LJ; Neptune RR; Kautz SA
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1127-35. PubMed ID: 17826457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired H-Reflex Adaptations Following Slope Walking in Individuals With Post-stroke Hemiparesis.
    Liang JN; Lee YJ; Akoopie E; Kleven BC; Koch T; Ho KY
    Front Physiol; 2019; 10():1232. PubMed ID: 31632287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achilles tendon morphology, plantar flexors torque and passive ankle stiffness in spastic hemiparetic stroke survivors.
    Freire B; Dias CP; Goulart NB; de Castro CD; Becker J; Gomes I; Vaz MA
    Clin Biomech (Bristol, Avon); 2017 Jan; 41():72-76. PubMed ID: 27992779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propulsive Forces Applied to the Body's Center of Mass Affect Metabolic Energetics Poststroke.
    Penke K; Scott K; Sinskey Y; Lewek MD
    Arch Phys Med Rehabil; 2019 Jun; 100(6):1068-1075. PubMed ID: 30391412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central Drive to the Paretic Ankle Plantarflexors Affects the Relationship Between Propulsion and Walking Speed After Stroke.
    Awad LN; Hsiao H; Binder-Macleod SA
    J Neurol Phys Ther; 2020 Jan; 44(1):42-48. PubMed ID: 31834220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke.
    Palmer JA; Hsiao H; Awad LN; Binder-Macleod SA
    Clin Neurophysiol; 2016 Mar; 127(3):1837-44. PubMed ID: 26724913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.
    Genthe K; Schenck C; Eicholtz S; Zajac-Cox L; Wolf S; Kesar TM
    Top Stroke Rehabil; 2018 Apr; 25(3):186-193. PubMed ID: 29457532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic evaluations of Achilles tendon mechanical properties poststroke.
    Zhao H; Ren Y; Wu YN; Liu SQ; Zhang LQ
    J Appl Physiol (1985); 2009 Mar; 106(3):843-9. PubMed ID: 19118156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered post-stroke propulsion is related to paretic swing phase kinematics.
    Dean JC; Bowden MG; Kelly AL; Kautz SA
    Clin Biomech (Bristol, Avon); 2020 Feb; 72():24-30. PubMed ID: 31809919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of unilateral real-time biofeedback on propulsive forces during gait.
    Schenck C; Kesar TM
    J Neuroeng Rehabil; 2017 Jun; 14(1):52. PubMed ID: 28583196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of lateral weight transfer is associated with walking speed in individuals post-stroke.
    Hsiao H; Gray VL; Creath RA; Binder-Macleod SA; Rogers MW
    J Biomech; 2017 Jul; 60():72-78. PubMed ID: 28687151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baseline predictors of treatment gains in peak propulsive force in individuals poststroke.
    Hsiao H; Higginson JS; Binder-Macleod SA
    J Neuroeng Rehabil; 2016 Jan; 13():2. PubMed ID: 26767921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achilles Tendon Load is Progressively Increased with Reductions in Walking Speed.
    Brauner T; Pourcelot P; Crevier-Denoix N; Horstmann T; Wearing SC
    Med Sci Sports Exerc; 2017 Oct; 49(10):2001-2008. PubMed ID: 28509763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.