BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 32245812)

  • 1. Tubulin tails and their modifications regulate protein diffusion on microtubules.
    Bigman LS; Levy Y
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8876-8883. PubMed ID: 32245812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating Microtubules: A Molecular Perspective on the Effects of Tail Modifications.
    Bigman LS; Levy Y
    J Mol Biol; 2021 Jun; 433(13):166988. PubMed ID: 33865866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of Tau binding to microtubules and its role in microtubule dynamics in live cells.
    Breuzard G; Hubert P; Nouar R; De Bessa T; Devred F; Barbier P; Sturgis JN; Peyrot V
    J Cell Sci; 2013 Jul; 126(Pt 13):2810-9. PubMed ID: 23659998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structural and dynamic visualization of the interaction between MAP7 and microtubules.
    Adler A; Bangera M; Beugelink JW; Bahri S; van Ingen H; Moores CA; Baldus M
    Nat Commun; 2024 Mar; 15(1):1948. PubMed ID: 38431715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential modification of the C-terminal tails of different α-tubulins and their importance for microtubule function in vivo.
    Bao M; Dörig RE; Vazquez-Pianzola PM; Beuchle D; Suter B
    Elife; 2023 Jun; 12():. PubMed ID: 37345829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human microtubule-associated-protein tau regulates the number of protofilaments in microtubules: a synchrotron x-ray scattering study.
    Choi MC; Raviv U; Miller HP; Gaylord MR; Kiris E; Ventimiglia D; Needleman DJ; Kim MW; Wilson L; Feinstein SC; Safinya CR
    Biophys J; 2009 Jul; 97(2):519-27. PubMed ID: 19619466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-Terminal Tail Polyglycylation and Polyglutamylation Alter Microtubule Mechanical Properties.
    Wall KP; Hart H; Lee T; Page C; Hawkins TL; Hough LE
    Biophys J; 2020 Dec; 119(11):2219-2230. PubMed ID: 33137305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsically disordered tubulin tails: complex tuners of microtubule functions?
    Roll-Mecak A
    Semin Cell Dev Biol; 2015 Jan; 37():11-9. PubMed ID: 25307498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between Tau and Different Conformations of Tubulin: Implications for Tau Function and Mechanism.
    Duan AR; Jonasson EM; Alberico EO; Li C; Scripture JP; Miller RA; Alber MS; Goodson HV
    J Mol Biol; 2017 May; 429(9):1424-1438. PubMed ID: 28322917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing interactions between CLIP-170, EB1, and microtubules.
    Gupta KK; Joyce MV; Slabbekoorn AR; Zhu ZC; Paulson BA; Boggess B; Goodson HV
    J Mol Biol; 2010 Feb; 395(5):1049-62. PubMed ID: 19913027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-atomic cryo-EM structure of PRC1 bound to the microtubule.
    Kellogg EH; Howes S; Ti SC; Ramírez-Aportela E; Kapoor TM; Chacón P; Nogales E
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9430-9. PubMed ID: 27493215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between EB1 and microtubules: dramatic effect of affinity tags and evidence for cooperative behavior.
    Zhu ZC; Gupta KK; Slabbekoorn AR; Paulson BA; Folker ES; Goodson HV
    J Biol Chem; 2009 Nov; 284(47):32651-61. PubMed ID: 19778897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A targeted multienzyme mechanism for selective microtubule polyglutamylation.
    van Dijk J; Rogowski K; Miro J; Lacroix B; Eddé B; Janke C
    Mol Cell; 2007 May; 26(3):437-48. PubMed ID: 17499049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular investigations into the unfoldase action of severing enzymes on microtubules.
    Varikoti RA; Macke AC; Speck V; Ross JL; Dima RI
    Cytoskeleton (Hoboken); 2020 May; 77(5-6):214-228. PubMed ID: 32170815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-translational modifications of tubulin in the nervous system.
    Fukushima N; Furuta D; Hidaka Y; Moriyama R; Tsujiuchi T
    J Neurochem; 2009 May; 109(3):683-93. PubMed ID: 19250341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the atomistic-based continuum viscoelastic constitutive relations for axonal microtubules.
    Adnan A; Qidwai S; Bagchi A
    J Mech Behav Biomed Mater; 2018 Oct; 86():375-389. PubMed ID: 30015209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanics of severing for large microtubule complexes revealed by coarse-grained simulations.
    Theisen KE; Desai NJ; Volski AM; Dima RI
    J Chem Phys; 2013 Sep; 139(12):121926. PubMed ID: 24089738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyglutamylation: a fine-regulator of protein function? 'Protein Modifications: beyond the usual suspects' review series.
    Janke C; Rogowski K; van Dijk J
    EMBO Rep; 2008 Jul; 9(7):636-41. PubMed ID: 18566597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of MT dynamics via direct binding of an Abl family kinase.
    Hu Y; Lyu W; Lowery LA; Koleske AJ
    J Cell Biol; 2019 Dec; 218(12):3986-3997. PubMed ID: 31699690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules.
    Chung PJ; Choi MC; Miller HP; Feinstein HE; Raviv U; Li Y; Wilson L; Feinstein SC; Safinya CR
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6416-25. PubMed ID: 26542680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.