These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32245929)

  • 41. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.
    Tong J; Chen Y
    Water Res; 2009 Jul; 43(12):2969-76. PubMed ID: 19443007
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Production and recovery process of polyhydroxybutyrate (PHB) from waste activated sludge.
    Mahapatra K; Suresh Kumar M; Chakrabarti T
    J Environ Sci Eng; 2007 Jul; 49(3):164-9. PubMed ID: 18476438
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of the integration of P recovery, polyhydroxyalkanoate production and short cut nitrogen removal in a mainstream wastewater treatment process.
    Larriba O; Rovira-Cal E; Juznic-Zonta Z; Guisasola A; Baeza JA
    Water Res; 2020 Apr; 172():115474. PubMed ID: 31958593
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genomic insights into the metabolism of 'Candidatus Defluviicoccus seviourii', a member of Defluviicoccus cluster III abundant in industrial activated sludge.
    Onetto CA; Grbin PR; McIlroy SJ; Eales KL
    FEMS Microbiol Ecol; 2019 Feb; 95(2):. PubMed ID: 30476038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of chemical oxygen demand concentration, pH and operation cycle on polyhydroxyalkanoates synthesis with waste sludge.
    Zheng Y; Guo L; Liu Y; She Z; Gao M; Jin C; Zhao Y
    Environ Technol; 2021 May; 42(12):1922-1929. PubMed ID: 31638475
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gas chromatographic analysis of polyhydroxybutyrate in activated sludge: a round-robin test.
    Baetens D; Aurola AM; Foglia A; Dionisi D; van Loosdrecht MC
    Water Sci Technol; 2002; 46(1-2):357-61. PubMed ID: 12216651
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of polyhydroxyalkanoates production from waste feedstocks and applications.
    Pakalapati H; Chang CK; Show PL; Arumugasamy SK; Lan JC
    J Biosci Bioeng; 2018 Sep; 126(3):282-292. PubMed ID: 29803402
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.
    Tandukar M; Pavlostathis SG
    Water Res; 2015 Dec; 87():432-45. PubMed ID: 25979784
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polyhydroxyalkanoate production potential of heterotrophic bacteria in activated sludge.
    Inoue D; Suzuki Y; Uchida T; Morohoshi J; Sei K
    J Biosci Bioeng; 2016 Jan; 121(1):47-51. PubMed ID: 26071670
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimization of an enriched mixed culture to increase PHA accumulation using industrial saline complex wastewater as a substrate.
    Argiz L; Fra-Vázquez A; Del Río ÁV; Mosquera-Corral A
    Chemosphere; 2020 May; 247():125873. PubMed ID: 31972488
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production of polyhydroxyalkanoates from propylene oxide saponification wastewater residual sludge using volatile fatty acids and bacterial community succession.
    Meng D; Gong C; Sukumaran RK; Dionysiou DD; Huang Z; Li R; Liu Y; Ji Y; Gu P; Fan X; Li Q
    Bioresour Technol; 2021 Jun; 329():124912. PubMed ID: 33667990
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale.
    Morgan-Sagastume F; Hjort M; Cirne D; Gérardin F; Lacroix S; Gaval G; Karabegovic L; Alexandersson T; Johansson P; Karlsson A; Bengtsson S; Arcos-Hernández MV; Magnusson P; Werker A
    Bioresour Technol; 2015 Apr; 181():78-89. PubMed ID: 25638407
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales.
    Jia Q; Xiong H; Wang H; Shi H; Sheng X; Sun R; Chen G
    Bioresour Technol; 2014 Nov; 171():159-67. PubMed ID: 25194265
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The upgrading of conventional activated sludge processes with thermophilic aerobic membrane reactor: Alternative solutions for sludge reduction.
    Collivignarelli MC; Abbà A; Bertanza G; Frattarola A
    J Environ Manage; 2020 Jun; 264():110490. PubMed ID: 32250911
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate.
    Al Yaqout AF
    Waste Manag; 2003; 23(9):817-24. PubMed ID: 14583244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sludge retention time impacts on polyhydroxyalkanoate productivity in uncoupled storage/growth processes.
    Matos M; Cruz RAP; Cardoso P; Silva F; Freitas EB; Carvalho G; Reis MAM
    Sci Total Environ; 2021 Dec; 799():149363. PubMed ID: 34371408
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A review on recovery of proteins from industrial wastewaters with special emphasis on PHA production process: Sustainable circular bioeconomy process development.
    Yadav B; Chavan S; Atmakuri A; Tyagi RD; Drogui P
    Bioresour Technol; 2020 Dec; 317():124006. PubMed ID: 32889176
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of decreased hydraulic retention time on the performance and stability of co-digestion of sewage sludge with grease trap sludge and organic fraction of municipal waste.
    Grosser A
    J Environ Manage; 2017 Dec; 203(Pt 3):1143-1157. PubMed ID: 28468730
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recovery of polyhydroxyalkanoate from activated sludge in an enhanced biological phosphorus removal bench-scale reactor.
    Perez-Feito R; Noguera DR
    Water Environ Res; 2006 Jul; 78(7):770-5. PubMed ID: 16929649
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling.
    Amulya K; Jukuri S; Venkata Mohan S
    Bioresour Technol; 2015; 188():231-9. PubMed ID: 25682477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.