These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32246057)

  • 1. Free-energy landscapes of membrane co-translocational protein unfolding.
    Rosen CB; Bayley H; Rodriguez-Larrea D
    Commun Biol; 2020 Apr; 3(1):160. PubMed ID: 32246057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane protein rotaxanes reveal kinetic traps in the refolding of translocated substrates.
    Feng J; Martin-Baniandres P; Booth MJ; Veggiani G; Howarth M; Bayley H; Rodriguez-Larrea D
    Commun Biol; 2020 Apr; 3(1):159. PubMed ID: 32246060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein co-translocational unfolding depends on the direction of pulling.
    Rodriguez-Larrea D; Bayley H
    Nat Commun; 2014 Sep; 5():4841. PubMed ID: 25197784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multistep protein unfolding during nanopore translocation.
    Rodriguez-Larrea D; Bayley H
    Nat Nanotechnol; 2013 Apr; 8(4):288-95. PubMed ID: 23474543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of unfolded protein transport through an aerolysin pore.
    Pastoriza-Gallego M; Rabah L; Gibrat G; Thiebot B; van der Goot FG; Auvray L; Betton JM; Pelta J
    J Am Chem Soc; 2011 Mar; 133(9):2923-31. PubMed ID: 21319816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the energy landscape for second-stage folding of a single membrane protein.
    Min D; Jefferson RE; Bowie JU; Yoon TY
    Nat Chem Biol; 2015 Dec; 11(12):981-7. PubMed ID: 26479439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal unfolding of proteins probed at the single molecule level using nanopores.
    Payet L; Martinho M; Pastoriza-Gallego M; Betton JM; Auvray L; Pelta J; Mathé J
    Anal Chem; 2012 May; 84(9):4071-6. PubMed ID: 22486207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium folding of pro-HlyA from Escherichia coli reveals a stable calcium ion dependent folding intermediate.
    Thomas S; Bakkes PJ; Smits SH; Schmitt L
    Biochim Biophys Acta; 2014 Sep; 1844(9):1500-10. PubMed ID: 24865936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore.
    Di Marino D; Bonome EL; Tramontano A; Chinappi M
    J Phys Chem Lett; 2015 Aug; 6(15):2963-8. PubMed ID: 26267189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulations and theory of protein translocation.
    Makarov DE
    Acc Chem Res; 2009 Feb; 42(2):281-9. PubMed ID: 19072704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-driven DNA translocations through a nanopore.
    Meller A; Nivon L; Branton D
    Phys Rev Lett; 2001 Apr; 86(15):3435-8. PubMed ID: 11327989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins.
    Bhakdi S; Bayley H; Valeva A; Walev I; Walker B; Kehoe M; Palmer M
    Arch Microbiol; 1996 Feb; 165(2):73-9. PubMed ID: 8593102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of hemolysin toxin: relationship between two internal protein sites of acylation.
    Langston KG; Worsham LM; Earls L; Ernst-Fonberg ML
    Biochemistry; 2004 Apr; 43(14):4338-46. PubMed ID: 15065878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Staphylococcal pore-forming toxins.
    Prévost G; Mourey L; Colin DA; Menestrina G
    Curr Top Microbiol Immunol; 2001; 257():53-83. PubMed ID: 11417122
    [No Abstract]   [Full Text] [Related]  

  • 15. Switching a bacterial toxin to good use.
    Travis J
    Science; 1993 Dec; 262(5140):1646. PubMed ID: 8259508
    [No Abstract]   [Full Text] [Related]  

  • 16. Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP.
    Nivala J; Mulroney L; Luan Q; Abu-Shumays R; Akeson M
    Methods Mol Biol; 2021; 2186():145-155. PubMed ID: 32918735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and membrane-inserted pore channel.
    Rausell C; Pardo-López L; Sánchez J; Muñoz-Garay C; Morera C; Soberón M; Bravo A
    J Biol Chem; 2004 Dec; 279(53):55168-75. PubMed ID: 15498772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translocation intermediates of ubiquitin through an α-hemolysin nanopore: implications for detection of post-translational modifications.
    Bonome EL; Cecconi F; Chinappi M
    Nanoscale; 2019 May; 11(20):9920-9930. PubMed ID: 31069350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single molecule compression reveals intra-protein forces drive cytotoxin pore formation.
    Czajkowsky DM; Sun J; Shao Z
    Elife; 2015 Dec; 4():e08421. PubMed ID: 26652734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalyzing the translocation of polypeptides through attractive interactions.
    Wolfe AJ; Mohammad MM; Cheley S; Bayley H; Movileanu L
    J Am Chem Soc; 2007 Nov; 129(45):14034-41. PubMed ID: 17949000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.