These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32246081)

  • 1. Metal concentrations and biological effects from one of the largest mining disasters in the world (Brumadinho, Minas Gerais, Brazil).
    Vergilio CDS; Lacerda D; Oliveira BCV; Sartori E; Campos GM; Pereira ALS; Aguiar DB; Souza TDS; Almeida MG; Thompson F; Rezende CE
    Sci Rep; 2020 Apr; 10(1):5936. PubMed ID: 32246081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First year after the Brumadinho tailings' dam collapse: Spatial and seasonal variation of trace elements in sediments, fishes and macrophytes from the Paraopeba River, Brazil.
    Parente CET; Lino AS; Carvalho GO; Pizzochero AC; Azevedo-Silva CE; Freitas MO; Teixeira C; Moura RL; Ferreira Filho VJM; Malm O
    Environ Res; 2021 Feb; 193():110526. PubMed ID: 33249035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prognosis of metal concentrations in sediments and water of Paraopeba River following the collapse of B1 tailings dam in Brumadinho (Minas Gerais, Brazil).
    Pacheco FAL; do Valle Junior RF; de Melo Silva MMAP; Pissarra TCT; Carvalho de Melo M; Valera CA; Sanches Fernandes LF
    Sci Total Environ; 2022 Feb; 809():151157. PubMed ID: 34687709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring a new approach for assessing the fate and behavior of the tailings released by the Brumadinho dam collapse (Minas Gerais, Brazil).
    Kobayashi H; Garnier J; Mulholland DS; Quantin C; Haurine F; Tonha M; Joko C; Olivetti D; Freydier R; Seyler P; Martinez JM; Roig HL
    J Hazard Mater; 2023 Apr; 448():130828. PubMed ID: 36731315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immediate and long-term impacts of one of the worst mining tailing dam failure worldwide (Bento Rodrigues, Minas Gerais, Brazil).
    Dos Santos Vergilio C; Lacerda D; da Silva Souza T; de Oliveira BCV; Fioresi VS; de Souza VV; da Rocha Rodrigues G; de Araujo Moreira Barbosa MK; Sartori E; Rangel TP; de Almeida DQR; de Almeida MG; Thompson F; de Rezende CE
    Sci Total Environ; 2021 Feb; 756():143697. PubMed ID: 33307494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A partial least squares-path model of causality among environmental deterioration indicators in the dry period of Paraopeba River after the rupture of B1 tailings dam in Brumadinho (Minas Gerais, Brazil).
    Mendes RG; do Valle Junior RF; de Melo Silva MMAP; Sanches Fernandes LF; Pinheiro Fernandes AC; Pissarra TCT; de Melo MC; Valera CA; Pacheco FAL
    Environ Pollut; 2022 Aug; 306():119341. PubMed ID: 35469926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal speciation of the Paraopeba river after the Brumadinho dam failure.
    Teramoto EH; Gemeiner H; Zanatta MBT; Menegário AA; Chang HK
    Sci Total Environ; 2021 Feb; 757():143917. PubMed ID: 33321338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A partial least squares-path model of environmental degradation in the Paraopeba River, for rainy seasons after the rupture of B1 tailings dam, Brumadinho, Brazil.
    Mendes RG; do Valle Junior RF; de Melo Silva MMAP; de Morais Fernandes GH; Fernandes LFS; Fernandes ACP; Pissarra TCT; de Melo MC; Valera CA; Pacheco FAL
    Sci Total Environ; 2022 Dec; 851(Pt 1):158248. PubMed ID: 36028023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contaminants in surface water and sediments near the Tynagh silver mine site, County Galway, Ireland.
    O'Neill A; Phillips DH; Bowen J; Sen Gupta B
    Sci Total Environ; 2015 Apr; 512-513():261-272. PubMed ID: 25634731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Severe impacts of the Brumadinho dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River.
    Thompson F; de Oliveira BC; Cordeiro MC; Masi BP; Rangel TP; Paz P; Freitas T; Lopes G; Silva BS; S Cabral A; Soares M; Lacerda D; Dos Santos Vergilio C; Lopes-Ferreira M; Lima C; Thompson C; de Rezende CE
    Sci Total Environ; 2020 Feb; 705():135914. PubMed ID: 31838417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of the Samarco Tailing Dam Collapse on Metals and Arsenic Concentration in Freshwater Fish Muscle from Doce River, Southeastern Brazil.
    Ferreira FF; de Freitas MBD; Szinwelski N; Vicente N; Medeiros LCC; Schaefer CEGR; Dergam JA; Sperber CF
    Integr Environ Assess Manag; 2020 Sep; 16(5):622-630. PubMed ID: 32470204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectro-temporal analysis of the Paraopeba River water after the tailings dam burst of the Córrego do Feijão mine, in Brumadinho, Brazil.
    Teixeira DBS; Veloso MF; Ferreira FLV; Gleriani JM; do Amaral CH
    Environ Monit Assess; 2021 Jun; 193(7):435. PubMed ID: 34152464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rupture of Brumadinho dam (Minas Gerais, Brazil): embryotoxicity in zebrafish induced by metal mixture-contaminated water.
    Peixoto PVL; de Andrade ÍBL; Sales BCP; Pereira LC
    J Environ Sci Health B; 2022; 57(6):479-488. PubMed ID: 35475472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioavailability and ecological risks of trace metals in bottom sediments from Doce river continental shelf before and after the biggest environmental disaster in Brazil: The collapse of the Fundão dam.
    Aguiar VMC; Neto JAB; Quaresma VDS; Bastos AC; Athayde JPM
    J Environ Manage; 2020 Oct; 272():111086. PubMed ID: 32854890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecotoxicological assessment after the world's largest tailing dam collapse (Fundão dam, Mariana, Brazil): effects on oribatid mites.
    Buch AC; Sautter KD; Marques ED; Silva-Filho EV
    Environ Geochem Health; 2020 Nov; 42(11):3575-3595. PubMed ID: 32409973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and abundance of clinically relevant antimicrobial resistance genes in environmental samples after the Brumadinho dam disaster, Brazil.
    Furlan JPR; Dos Santos LDR; Moretto JAS; Ramos MS; Gallo IFL; Alves GAD; Paulelli AC; Rocha CCS; Cesila CA; Gallimberti M; Devóz PP; Júnior FB; Stehling EG
    Sci Total Environ; 2020 Jul; 726():138100. PubMed ID: 32334350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal trends of trace elements bioaccumulation by a vulnerable cetacean (Pontoporia blainvillei) before and after one of the largest mining disasters worldwide.
    Manhães BMR; Vannuci-Silva M; Brião JA; Guari EB; Botta S; Colosio AC; Ramos HGC; Barbosa LA; Cunha IAG; Azevedo AF; Cunha HA; Bisi TL; Lailson-Brito J
    Sci Total Environ; 2022 Jan; 804():150196. PubMed ID: 34798738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Samarco mine tailing disaster: A possible time-bomb for heavy metals contamination?
    Queiroz HM; Nóbrega GN; Ferreira TO; Almeida LS; Romero TB; Santaella ST; Bernardino AF; Otero XL
    Sci Total Environ; 2018 Oct; 637-638():498-506. PubMed ID: 29754084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doce River Estuary: Geochemical Changes Following the Largest Tailing Spill in South America.
    Viana LMS; Pestana IA; Carvalho CEV; Salomão MSMB
    Arch Environ Contam Toxicol; 2020 Oct; 79(3):343-353. PubMed ID: 33057758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh.
    Bhuyan MS; Bakar MA
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):27587-27600. PubMed ID: 28980109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.