BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 32246349)

  • 1. Genome-wide analysis of glycerol-3-phosphate O-acyltransferase gene family and functional characterization of two cutin group GPATs in Brassica napus.
    Wang J; Singh SK; Geng S; Zhang S; Yuan L
    Planta; 2020 Apr; 251(4):93. PubMed ID: 32246349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus.
    Chen X; Truksa M; Snyder CL; El-Mezawy A; Shah S; Weselake RJ
    Plant Physiol; 2011 Feb; 155(2):851-65. PubMed ID: 21173024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification of the NPR1-like gene family in Brassica napus and functional characterization of BnaNPR1 in resistance to Sclerotinia sclerotiorum.
    Wang Z; Ma LY; Li X; Zhao FY; Sarwar R; Cao J; Li YL; Ding LN; Zhu KM; Yang YH; Tan XL
    Plant Cell Rep; 2020 Jun; 39(6):709-722. PubMed ID: 32140767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycerol-3-phosphate acyltransferase 4 is essential for the normal development of reproductive organs and the embryo in Brassica napus.
    Chen X; Chen G; Truksa M; Snyder CL; Shah S; Weselake RJ
    J Exp Bot; 2014 Aug; 65(15):4201-15. PubMed ID: 24821955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.
    Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y
    Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum.
    Rietz S; Bernsdorff FE; Cai D
    J Exp Bot; 2012 Sep; 63(15):5507-19. PubMed ID: 22888126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification of hexokinase gene family in Brassica napus: structure, phylogenetic analysis, expression, and functional characterization.
    Wang J; Wang X; Geng S; Singh SK; Wang Y; Pattanaik S; Yuan L
    Planta; 2018 Jul; 248(1):171-182. PubMed ID: 29644447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BnA1.CER4 and BnC1.CER4 are redundantly involved in branched primary alcohols in the cuticle wax of Brassica napus.
    Liu J; Zhu L; Wang B; Wang H; Khan I; Zhang S; Wen J; Ma C; Dai C; Tu J; Shen J; Yi B; Fu T
    Theor Appl Genet; 2021 Sep; 134(9):3051-3067. PubMed ID: 34120211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus.
    Cao Y; Yan X; Ran S; Ralph J; Smith RA; Chen X; Qu C; Li J; Liu L
    Plant Cell Environ; 2022 Jan; 45(1):248-261. PubMed ID: 34697825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Sn-glycerol-3-phosphate acyltransferases (GPATs) in plants].
    Liu C; Xiao DW; Shi CL; Hu XF; Wu KB; Guan CY; Xiong XH
    Yi Chuan; 2013 Dec; 35(12):1352-9. PubMed ID: 24645344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate Receptor-like (GLR) Family in
    Gulzar RMA; Ren CX; Fang X; Xu YP; Saand MA; Cai XZ
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.
    Joshi RK; Megha S; Rahman MH; Basu U; Kav NN
    Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome Wide Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Sclerotinia sclerotiorum Infection in Brassica napus.
    Joshi RK; Megha S; Basu U; Rahman MH; Kav NN
    PLoS One; 2016; 11(7):e0158784. PubMed ID: 27388760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycerol-3-Phosphate Acyltransferase GPAT9 Enhanced Seed Oil Accumulation and Eukaryotic Galactolipid Synthesis in
    Gong W; Chen W; Gao Q; Qian L; Yuan X; Tang S; Hong Y
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Characterization of the
    Zuo R; Xie M; Gao F; Sumbal W; Cheng X; Liu Y; Bai Z; Liu S
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastid Glycerol-3-phosphate Acyltransferase Enhanced Plant Growth and Prokaryotic Glycerolipid Synthesis in
    Kang H; Jia C; Liu N; Aboagla AAA; Chen W; Gong W; Tang S; Hong Y
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32727046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combination of genome-wide association study and transcriptome analysis in leaf epidermis identifies candidate genes involved in cuticular wax biosynthesis in Brassica napus.
    Jin S; Zhang S; Liu Y; Jiang Y; Wang Y; Li J; Ni Y
    BMC Plant Biol; 2020 Oct; 20(1):458. PubMed ID: 33023503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of land-plant-specific glycerol-3-phosphate acyltransferases is essential for cuticle formation and gametophore development in Physcomitrella patens.
    Lee SB; Yang SU; Pandey G; Kim MS; Hyoung S; Choi D; Shin JS; Suh MC
    New Phytol; 2020 Mar; 225(6):2468-2483. PubMed ID: 31691980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of OsPGIP2 confers Sclerotinia sclerotiorum resistance in Brassica napus through increased activation of defense mechanisms.
    Wang Z; Wan L; Xin Q; Chen Y; Zhang X; Dong F; Hong D; Yang G
    J Exp Bot; 2018 May; 69(12):3141-3155. PubMed ID: 29648614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.