BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32246719)

  • 1. Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1.
    Biggs BW; Bedore SR; Arvay E; Huang S; Subramanian H; McIntyre EA; Duscent-Maitland CV; Neidle EL; Tyo KEJ
    Nucleic Acids Res; 2020 May; 48(9):5169-5182. PubMed ID: 32246719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and assured genetic engineering methods applied to Acinetobacter baylyi ADP1 genome streamlining.
    Suárez GA; Dugan KR; Renda BA; Leonard SP; Gangavarapu LS; Barrick JE
    Nucleic Acids Res; 2020 May; 48(8):4585-4600. PubMed ID: 32232367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aromatic natural products synthesis from aromatic lignin monomers using
    Biggs BW; Tyo KEJ
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Highly Ferulate-Tolerant Acinetobacter baylyi ADP1 Isolates by a Rapid Reverse Engineering Method.
    Luo J; McIntyre EA; Bedore SR; Santala V; Neidle EL; Santala S
    Appl Environ Microbiol; 2022 Jan; 88(2):e0178021. PubMed ID: 34788063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acinetobacter baylyi ADP1-naturally competent for synthetic biology.
    Santala S; Santala V
    Essays Biochem; 2021 Jul; 65(2):309-318. PubMed ID: 33769448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic metabolic pathway for the production of 1-alkenes from lignin-derived molecules.
    Luo J; Lehtinen T; Efimova E; Santala V; Santala S
    Microb Cell Fact; 2019 Mar; 18(1):48. PubMed ID: 30857542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome instability mediates the loss of key traits by Acinetobacter baylyi ADP1 during laboratory evolution.
    Renda BA; Dasgupta A; Leon D; Barrick JE
    J Bacteriol; 2015 Mar; 197(5):872-81. PubMed ID: 25512307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced Mutation Rate and Increased Transformability of Transposon-Free Acinetobacter baylyi ADP1-ISx.
    Suárez GA; Renda BA; Dasgupta A; Barrick JE
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28667117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the regulation of the Pu promoter in Acinetobacter baylyi ADP1.
    Huang WE; Singer AC; Spiers AJ; Preston GM; Whiteley AS
    Environ Microbiol; 2008 Jul; 10(7):1668-80. PubMed ID: 18363715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acinetobacter baylyi ADP1: transforming the choice of model organism.
    Elliott KT; Neidle EL
    IUBMB Life; 2011 Dec; 63(12):1075-80. PubMed ID: 22034222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium.
    Barbe V; Vallenet D; Fonknechten N; Kreimeyer A; Oztas S; Labarre L; Cruveiller S; Robert C; Duprat S; Wincker P; Ornston LN; Weissenbach J; Marlière P; Cohen GN; Médigue C
    Nucleic Acids Res; 2004; 32(19):5766-79. PubMed ID: 15514110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rewiring the wax ester production pathway of Acinetobacter baylyi ADP1.
    Santala S; Efimova E; Koskinen P; Karp MT; Santala V
    ACS Synth Biol; 2014 Mar; 3(3):145-51. PubMed ID: 24898054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and modeling of transcriptional cross-regulation in Acinetobacter baylyi ADP1.
    Zhang D; Zhao Y; He Y; Wang Y; Zhao Y; Zheng Y; Wei X; Zhang L; Li Y; Jin T; Wu L; Wang H; Davison PA; Xu J; Huang WE
    ACS Synth Biol; 2012 Jul; 1(7):274-83. PubMed ID: 23651250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acinetobacter baylyi ADP1 as a model for metabolic system biology.
    de Berardinis V; Durot M; Weissenbach J; Salanoubat M
    Curr Opin Microbiol; 2009 Oct; 12(5):568-76. PubMed ID: 19709925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering
    Arvay E; Biggs BW; Guerrero L; Jiang V; Tyo K
    Metab Eng Commun; 2021 Dec; 13():e00173. PubMed ID: 34430203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkane and wax ester production from lignin-related aromatic compounds.
    Salmela M; Lehtinen T; Efimova E; Santala S; Santala V
    Biotechnol Bioeng; 2019 Aug; 116(8):1934-1945. PubMed ID: 31038208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering.
    Metzgar D; Bacher JM; Pezo V; Reader J; Döring V; Schimmel P; Marlière P; de Crécy-Lagard V
    Nucleic Acids Res; 2004; 32(19):5780-90. PubMed ID: 15514111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression vectors for Acinetobacter baylyi ADP1.
    Murin CD; Segal K; Bryksin A; Matsumura I
    Appl Environ Microbiol; 2012 Jan; 78(1):280-3. PubMed ID: 22020504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and wax ester production of an Acinetobacter baylyi ADP1 mutant deficient in exopolysaccharide capsule synthesis.
    Kannisto M; Efimova E; Karp M; Santala V
    J Ind Microbiol Biotechnol; 2017 Jan; 44(1):99-105. PubMed ID: 27866334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Furfural biotransformation in Acinetobacter baylyi ADP1 and Acinetobacter schindleri ACE.
    Arteaga JE; Cerros K; Rivera-Becerril E; Lara AR; Le Borgne S; Sigala JC
    Biotechnol Lett; 2021 May; 43(5):1043-1050. PubMed ID: 33590377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.