BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32246839)

  • 1. Case contamination in electronic health records based case-control studies.
    Wang L; Schnall J; Small A; Hubbard RA; Moore JH; Damrauer SM; Chen J
    Biometrics; 2021 Mar; 77(1):67-77. PubMed ID: 32246839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robust approach for electronic health record-based case-control studies with contaminated case pools.
    Dai G; Ma Y; Hasler J; Chen J; Carroll RJ
    Biometrics; 2023 Sep; 79(3):2023-2035. PubMed ID: 35841231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cost-effective chart review sampling design to account for phenotyping error in electronic health records (EHR) data.
    Yin Z; Tong J; Chen Y; Hubbard RA; Tang CY
    J Am Med Inform Assoc; 2021 Dec; 29(1):52-61. PubMed ID: 34718618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for cohort selection of cardiovascular disease records from an electronic health record system.
    Abrahão MTF; Nobre MRC; Gutierrez MA
    Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-supervised validation of multiple surrogate outcomes with application to electronic medical records phenotyping.
    Hong C; Liao KP; Cai T
    Biometrics; 2019 Mar; 75(1):78-89. PubMed ID: 30267536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing Bias Due to Outcome Misclassification for Epidemiologic Studies Using EHR-derived Probabilistic Phenotypes.
    Hubbard RA; Tong J; Duan R; Chen Y
    Epidemiology; 2020 Jul; 31(4):542-550. PubMed ID: 32282406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Phenotyping on Electronic Health Records Facilitates Genetic Diagnosis by Clinical Exomes.
    Son JH; Xie G; Yuan C; Ena L; Li Z; Goldstein A; Huang L; Wang L; Shen F; Liu H; Mehl K; Groopman EE; Marasa M; Kiryluk K; Gharavi AG; Chung WK; Hripcsak G; Friedman C; Weng C; Wang K
    Am J Hum Genet; 2018 Jul; 103(1):58-73. PubMed ID: 29961570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the power of genetic association tests with imperfect phenotype derived from electronic medical records.
    Sinnott JA; Dai W; Liao KP; Shaw SY; Ananthakrishnan AN; Gainer VS; Karlson EW; Churchill S; Szolovits P; Murphy S; Kohane I; Plenge R; Cai T
    Hum Genet; 2014 Nov; 133(11):1369-82. PubMed ID: 25062868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of electronic health records for psychiatric phenotyping and genomics.
    Smoller JW
    Am J Med Genet B Neuropsychiatr Genet; 2018 Oct; 177(7):601-612. PubMed ID: 28557243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can the Use of Bayesian Analysis Methods Correct for Incompleteness in Electronic Health Records Diagnosis Data? Development of a Novel Method Using Simulated and Real-Life Clinical Data.
    Ford E; Rooney P; Hurley P; Oliver S; Bremner S; Cassell J
    Front Public Health; 2020; 8():54. PubMed ID: 32211363
    [No Abstract]   [Full Text] [Related]  

  • 11. SAT: a Surrogate-Assisted Two-wave case boosting sampling method, with application to EHR-based association studies.
    Liu X; Chubak J; Hubbard RA; Chen Y
    J Am Med Inform Assoc; 2022 Apr; 29(5):918-927. PubMed ID: 34962283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Case studies in bias reduction and inference for electronic health record data with selection bias and phenotype misclassification.
    Beesley LJ; Mukherjee B
    Stat Med; 2022 Dec; 41(28):5501-5516. PubMed ID: 36131394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical inference for association studies using electronic health records: handling both selection bias and outcome misclassification.
    Beesley LJ; Mukherjee B
    Biometrics; 2022 Mar; 78(1):214-226. PubMed ID: 33179768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Quantitative Bias Analysis Approach to Informative Presence Bias in Electronic Health Records.
    Zhang H; Clark AS; Hubbard RA
    Epidemiology; 2024 May; 35(3):349-358. PubMed ID: 38630509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PIE: A prior knowledge guided integrated likelihood estimation method for bias reduction in association studies using electronic health records data.
    Huang J; Duan R; Hubbard RA; Wu Y; Moore JH; Xu H; Chen Y
    J Am Med Inform Assoc; 2018 Mar; 25(3):345-352. PubMed ID: 29206922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An augmented estimation procedure for EHR-based association studies accounting for differential misclassification.
    Tong J; Huang J; Chubak J; Wang X; Moore JH; Hubbard RA; Chen Y
    J Am Med Inform Assoc; 2020 Feb; 27(2):244-253. PubMed ID: 31617899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevalence estimation by joint use of big data and health survey: a demonstration study using electronic health records in New York city.
    Kim RS; Shankar V
    BMC Med Res Methodol; 2020 Apr; 20(1):77. PubMed ID: 32252642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bias correction models for electronic health records data in the presence of non-random sampling.
    Kim J; Anthopolos R; Zhong J
    Biometrics; 2024 Jan; 80(1):. PubMed ID: 38488466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.