BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32247257)

  • 1. Flow and fate of silver nanoparticles in small French catchments under different land-uses: The first one-year study.
    Wang JL; Alasonati E; Tharaud M; Gelabert A; Fisicaro P; Benedetti MF
    Water Res; 2020 Jun; 176():115722. PubMed ID: 32247257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Titanium nanoparticles fate in small-sized watersheds under different land-uses.
    Wang JL; Alasonati E; Fisicaro P; Benedetti MF
    J Hazard Mater; 2022 Jan; 422():126695. PubMed ID: 34418834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS.
    Aznar R; Barahona F; Geiss O; Ponti J; José Luis T; Barrero-Moreno J
    Talanta; 2017 Dec; 175():200-208. PubMed ID: 28841979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the formation of silver-based nanoparticles under natural and semi-natural conditions.
    Wimmer A; Kalinnik A; Schuster M
    Water Res; 2018 Sep; 141():227-234. PubMed ID: 29793162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incidence and persistence of silver nanoparticles throughout the wastewater treatment process.
    Cervantes-Avilés P; Huang Y; Keller AA
    Water Res; 2019 Jun; 156():188-198. PubMed ID: 30913422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of solution chemistry on antimicrobial activities of silver nanoparticles against Gordonia sp.
    Chen D; Li X; Soule T; Yorio F; Orr L
    Sci Total Environ; 2016 Oct; 566-567():360-367. PubMed ID: 27228306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposures of aquatic organisms to the organophosphorus insecticide, chlorpyrifos resulting from use in the United States.
    Williams WM; Giddings JM; Purdy J; Solomon KR; Giesy JP
    Rev Environ Contam Toxicol; 2014; 231():77-117. PubMed ID: 24723134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disaggregation of silver nanoparticle homoaggregates in a river water matrix.
    Metreveli G; Philippe A; Schaumann GE
    Sci Total Environ; 2015 Dec; 535():35-44. PubMed ID: 25433382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S.
    Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR
    Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of Cerium-, Titanium-, and Silver-Bearing Nanoparticles in the Besòs and Ebro Rivers.
    Sanchís J; Jiménez-Lamana J; Abad E; Szpunar J; Farré M
    Environ Sci Technol; 2020 Apr; 54(7):3969-3978. PubMed ID: 32191837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?
    Zou X; Shi J; Zhang H
    Aquat Toxicol; 2014 Sep; 154():168-75. PubMed ID: 24907921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic solid phase extraction of silver-based nanoparticles in aqueous samples: Influence of particle composition and matrix effects on its application to environmental samples and species-selective elution and determination of silver sulphide nanoparticles with sp-ICP-MS.
    Urstoeger A; Zacherl L; Muhr M; Selic Y; Wenisch M; Klotz M; Schuster M
    Talanta; 2021 Apr; 225():122028. PubMed ID: 33592757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology, structure, and composition of sulfidized silver nanoparticles and their aggregation dynamics in river water.
    Metreveli G; David J; Schneider R; Kurtz S; Schaumann GE
    Sci Total Environ; 2020 Oct; 739():139989. PubMed ID: 32535467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity.
    Zhang W; Xiao B; Fang T
    Chemosphere; 2018 Jan; 191():324-334. PubMed ID: 29045933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper Drinking Water Pipes as a Previously Undocumented Source of Silver-Based Nanoparticles.
    Wimmer A; Beyerl J; Schuster M
    Environ Sci Technol; 2019 Nov; 53(22):13293-13301. PubMed ID: 31593441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What happens to silver-based nanoparticles if they meet seawater?
    Wimmer A; Urstoeger A; Funck NC; Adler FP; Lenz L; Doeblinger M; Schuster M
    Water Res; 2020 Mar; 171():115399. PubMed ID: 31896028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle size distributions of silver nanoparticles at environmentally relevant conditions.
    Cumberland SA; Lead JR
    J Chromatogr A; 2009 Dec; 1216(52):9099-105. PubMed ID: 19647834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation.
    Chao JB; Liu JF; Yu SJ; Feng YD; Tan ZQ; Liu R; Yin YG
    Anal Chem; 2011 Sep; 83(17):6875-82. PubMed ID: 21797201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.