BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 32247375)

  • 1. Selective neuronal vulnerability in Parkinson's disease.
    Gonzalez-Rodriguez P; Zampese E; Surmeier DJ
    Prog Brain Res; 2020; 252():61-89. PubMed ID: 32247375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of dopaminergic neuron loss in Parkinson's disease.
    Surmeier DJ
    FEBS J; 2018 Oct; 285(19):3657-3668. PubMed ID: 30028088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.
    Perfeito R; Cunha-Oliveira T; Rego AC
    Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson's Disease.
    Lin KJ; Lin KL; Chen SD; Liou CW; Chuang YC; Lin HY; Lin TK
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common Mechanisms Underlying α-Synuclein-Induced Mitochondrial Dysfunction in Parkinson's Disease.
    Sohrabi T; Mirzaei-Behbahani B; Zadali R; Pirhaghi M; Morozova-Roche LA; Meratan AA
    J Mol Biol; 2023 Jun; 435(12):167992. PubMed ID: 36736886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of fragile X mental retardation protein precedes Lewy pathology in Parkinson's disease.
    Tan Y; Sgobio C; Arzberger T; Machleid F; Tang Q; Findeis E; Tost J; Chakroun T; Gao P; Höllerhage M; Bötzel K; Herms J; Höglinger G; Koeglsperger T
    Acta Neuropathol; 2020 Feb; 139(2):319-345. PubMed ID: 31768670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-dependent nigral dopaminergic neurodegeneration and α-synuclein accumulation in RGS6-deficient mice.
    Luo Z; Ahlers-Dannen KE; Spicer MM; Yang J; Alberico S; Stevens HE; Narayanan NS; Fisher RA
    JCI Insight; 2019 May; 5(13):. PubMed ID: 31120439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson's disease.
    Surmeier DJ; Guzman JN; Sanchez-Padilla J; Schumacker PT
    Neuroscience; 2011 Dec; 198():221-31. PubMed ID: 21884755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: Role of oxidative stress mediated downregulation of DJ-1 in Parkinson's disease.
    Sharma N; Rao SP; Kalivendi SV
    Free Radic Biol Med; 2019 May; 135():28-37. PubMed ID: 30796974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pathology roadmap in Parkinson disease.
    Surmeier DJ; Sulzer D
    Prion; 2013; 7(1):85-91. PubMed ID: 23324593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial Dysfunction, Protein Misfolding and Neuroinflammation in Parkinson's Disease: Roads to Biomarker Discovery.
    Picca A; Guerra F; Calvani R; Romano R; Coelho-Júnior HJ; Bucci C; Marzetti E
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal vulnerability, pathogenesis, and Parkinson's disease.
    Sulzer D; Surmeier DJ
    Mov Disord; 2013 Jan; 28(1):41-50. PubMed ID: 22791686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson's disease model.
    Wegrzynowicz M; Bar-On D; Calo' L; Anichtchik O; Iovino M; Xia J; Ryazanov S; Leonov A; Giese A; Dalley JW; Griesinger C; Ashery U; Spillantini MG
    Acta Neuropathol; 2019 Oct; 138(4):575-595. PubMed ID: 31165254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial homeostasis regulation: A promising therapeutic target for Parkinson's disease.
    Yao MF; Dang T; Wang HJ; Zhu XZ; Qiao C
    Behav Brain Res; 2024 Feb; 459():114811. PubMed ID: 38103871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current perspective of mitochondrial biology in Parkinson's disease.
    Ammal Kaidery N; Thomas B
    Neurochem Int; 2018 Jul; 117():91-113. PubMed ID: 29550604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation and propagation of α-synuclein aggregation in the nervous system.
    Hijaz BA; Volpicelli-Daley LA
    Mol Neurodegener; 2020 Mar; 15(1):19. PubMed ID: 32143659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A split-GFP tool reveals differences in the sub-mitochondrial distribution of wt and mutant alpha-synuclein.
    Vicario M; Cieri D; Vallese F; Catoni C; Barazzuol L; Berto P; Grinzato A; Barbieri L; Brini M; Calì T
    Cell Death Dis; 2019 Nov; 10(11):857. PubMed ID: 31719530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium signaling in Parkinson's disease.
    Calì T; Ottolini D; Brini M
    Cell Tissue Res; 2014 Aug; 357(2):439-54. PubMed ID: 24781149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium entry and α-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons.
    Dryanovski DI; Guzman JN; Xie Z; Galteri DJ; Volpicelli-Daley LA; Lee VM; Miller RJ; Schumacker PT; Surmeier DJ
    J Neurosci; 2013 Jun; 33(24):10154-64. PubMed ID: 23761910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutant α-Synuclein Overexpression Induces Stressless Pacemaking in Vagal Motoneurons at Risk in Parkinson's Disease.
    Lasser-Katz E; Simchovitz A; Chiu WH; Oertel WH; Sharon R; Soreq H; Roeper J; Goldberg JA
    J Neurosci; 2017 Jan; 37(1):47-57. PubMed ID: 28053029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.