These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 32247568)
1. Development of a high-yield live-virus vaccine production platform using a novel fixed-bed bioreactor. Berrie DM; Waters RC; Montoya C; Chatel A; Vela EM Vaccine; 2020 Apr; 38(20):3639-3645. PubMed ID: 32247568 [TBL] [Abstract][Full Text] [Related]
2. Bioreactor production of rVSV-based vectors in Vero cell suspension cultures. Kiesslich S; Kim GN; Shen CF; Kang CY; Kamen AA Biotechnol Bioeng; 2021 Jul; 118(7):2649-2659. PubMed ID: 33837958 [TBL] [Abstract][Full Text] [Related]
3. Pseudorabies virus production using a serum-free medium in fixed-bed bioreactors with low cell inoculum density. Nie J; Sun Y; Peng F; Han F; Yang Y; Liu X; Liu C; Li Y; Bai Z Biotechnol Lett; 2020 Dec; 42(12):2551-2560. PubMed ID: 32816175 [TBL] [Abstract][Full Text] [Related]
4. Development of suspension adapted Vero cell culture process technology for production of viral vaccines. Shen CF; Guilbault C; Li X; Elahi SM; Ansorge S; Kamen A; Gilbert R Vaccine; 2019 Nov; 37(47):6996-7002. PubMed ID: 31288997 [TBL] [Abstract][Full Text] [Related]
5. Serum-free production of rVSV-ZEBOV in Vero cells: Microcarrier bioreactor versus scale-X™ hydro fixed-bed. Kiesslich S; Vila-Chã Losa JP; Gélinas JF; Kamen AA J Biotechnol; 2020 Feb; 310():32-39. PubMed ID: 32006630 [TBL] [Abstract][Full Text] [Related]
6. Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Kiesslich S; Kamen AA Biotechnol Adv; 2020 Nov; 44():107608. PubMed ID: 32768520 [TBL] [Abstract][Full Text] [Related]
7. Production Process Development of Pseudorabies Virus Vaccine by Using a Novel Scale-Down Model of a Fixed-Bed Bioreactor. Nie J; Sun Y; Peng F; Li X; Yang Y; Liu X; Li Y; Liu C; Bai Z J Pharm Sci; 2020 Feb; 109(2):959-965. PubMed ID: 31604085 [TBL] [Abstract][Full Text] [Related]
8. Serum-free microcarrier based production of replication deficient influenza vaccine candidate virus lacking NS1 using Vero cells. Chen A; Poh SL; Dietzsch C; Roethl E; Yan ML; Ng SK BMC Biotechnol; 2011 Aug; 11():81. PubMed ID: 21835017 [TBL] [Abstract][Full Text] [Related]
9. Propagation of Brazilian Zika virus strains in static and suspension cultures using Vero and BHK cells. Nikolay A; Castilho LR; Reichl U; Genzel Y Vaccine; 2018 May; 36(22):3140-3145. PubMed ID: 28343780 [TBL] [Abstract][Full Text] [Related]
10. Production of small ruminant morbillivirus, rift valley fever virus and lumpy skin disease virus in CelCradle™ -500A bioreactors. Rhazi H; Safini N; Mikou K; Alhyane M; Tadlaoui KO; Lin X; Venkatesan NP; Elharrak M BMC Vet Res; 2021 Feb; 17(1):93. PubMed ID: 33639955 [TBL] [Abstract][Full Text] [Related]
11. Process intensification of EB66® cell cultivations leads to high-yield yellow fever and Zika virus production. Nikolay A; Léon A; Schwamborn K; Genzel Y; Reichl U Appl Microbiol Biotechnol; 2018 Oct; 102(20):8725-8737. PubMed ID: 30091043 [TBL] [Abstract][Full Text] [Related]
12. Suspension-Vero cell cultures as a platform for viral vaccine production. Paillet C; Forno G; Kratje R; Etcheverrigaray M Vaccine; 2009 Oct; 27(46):6464-7. PubMed ID: 19559123 [TBL] [Abstract][Full Text] [Related]
13. MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation. Genzel Y; Dietzsch C; Rapp E; Schwarzer J; Reichl U Appl Microbiol Biotechnol; 2010 Sep; 88(2):461-75. PubMed ID: 20617311 [TBL] [Abstract][Full Text] [Related]
14. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production. Tapia F; Vázquez-Ramírez D; Genzel Y; Reichl U Appl Microbiol Biotechnol; 2016 Mar; 100(5):2121-32. PubMed ID: 26758296 [TBL] [Abstract][Full Text] [Related]
15. Adaptation of Vero cells to suspension growth for rabies virus production in different serum free media. Rourou S; Ben Zakkour M; Kallel H Vaccine; 2019 Nov; 37(47):6987-6995. PubMed ID: 31201054 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the Single-Use Fixed-Bed Bioreactors in Scalable Virus Production. Lesch HP; Valonen P; Karhinen M Biotechnol J; 2021 Jan; 16(1):e2000020. PubMed ID: 32971565 [TBL] [Abstract][Full Text] [Related]
17. Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17. Petiot E; Proust A; Traversier A; Durous L; Dappozze F; Gras M; Guillard C; Balloul JM; Rosa-Calatrava M Vaccine; 2018 May; 36(22):3101-3111. PubMed ID: 28571695 [TBL] [Abstract][Full Text] [Related]
18. Enhancing enterovirus A71 vaccine production yield by microcarrier profusion bioreactor culture. Liu CC; Wu SC; Wu SR; Lin HY; Guo MS; Yung-Chih Hu A; Chow YH; Chiang JR; Shieh DB; Chong P Vaccine; 2018 May; 36(22):3134-3139. PubMed ID: 28274636 [TBL] [Abstract][Full Text] [Related]
19. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse. Wu CY; Lin YW; Kuo CH; Liu WH; Tai HF; Pan CH; Chen YT; Hsiao PW; Chan CH; Chang CC; Liu CC; Chow YH; Chen JR PLoS One; 2015; 10(8):e0136420. PubMed ID: 26287531 [TBL] [Abstract][Full Text] [Related]
20. Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave Bioreactor microcarrier culture in 1-10 L scale. Hundt B; Best C; Schlawin N; Kassner H; Genzel Y; Reichl U Vaccine; 2007 May; 25(20):3987-95. PubMed ID: 17391818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]