BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3224757)

  • 1. Tinkering with antibiotic resistance: chloramphenicol acetyltransferase and its substrates.
    Shaw WV; Day P; Lewendon A; Murray IA
    Biochem Soc Trans; 1988 Dec; 16(6):939-42. PubMed ID: 3224757
    [No Abstract]   [Full Text] [Related]  

  • 2. Chloramphenicol resistance in meningococci.
    Shaw WV
    N Engl J Med; 1998 Sep; 339(13):917-8. PubMed ID: 9744978
    [No Abstract]   [Full Text] [Related]  

  • 3. Mutations in the chloramphenicol acetyltransferase (S61G, Y105C) increase accumulated amounts and resistance in Pseudomonas aeruginosa.
    Wang J; Liu JH
    FEMS Microbiol Lett; 2004 Jul; 236(2):197-204. PubMed ID: 15251197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide sequence analysis of a chloramphenicol-resistance determinant from Agrobacterium tumefaciens and identification of its gene product.
    Tennigkeit J; Matzura H
    Gene; 1991 Feb; 98(1):113-6. PubMed ID: 2013403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O-Acetyltransferases for chloramphenicol and other natural products.
    Murray IA; Shaw WV
    Antimicrob Agents Chemother; 1997 Jan; 41(1):1-6. PubMed ID: 8980745
    [No Abstract]   [Full Text] [Related]  

  • 6. Use of commercially available rapid chloramphenicol acetyltransferase test to detect resistance in Salmonella species.
    de la Maza L; Miller SI; Ferraro MJ
    J Clin Microbiol; 1990 Aug; 28(8):1867-9. PubMed ID: 2394807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloramphenicol acetyltransferase-a new selectable marker in stable nuclear transformation of the red alga Cyanidioschyzon merolae.
    Zienkiewicz M; Krupnik T; Drożak A; Golke A; Romanowska E
    Protoplasma; 2017 Jan; 254(1):587-596. PubMed ID: 26715590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translation attenuation regulation of chloramphenicol resistance in bacteria--a review.
    Lovett PS
    Gene; 1996 Nov; 179(1):157-62. PubMed ID: 8955642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence of Antibiotic Resistant Vibrio spp. in Shellfish Hatchery Environment.
    Dubert J; Osorio CR; Prado S; Barja JL
    Microb Ecol; 2016 Nov; 72(4):851-860. PubMed ID: 26552396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum caTC2R.
    Ahn C; Collins-Thompson D; Duncan C; Stiles ME
    Plasmid; 1992 May; 27(3):169-76. PubMed ID: 1513874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and analysis of a modified Tn4001 conferring chloramphenicol resistance in Mycoplasma pneumoniae.
    Hahn TW; Mothershed EA; Waldo RH; Krause DC
    Plasmid; 1999 Mar; 41(2):120-4. PubMed ID: 10087215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of antibiotic resistance cassettes with multiple paired restriction sites for insertional mutagenesis of Haemophilus influenzae.
    Whitby PW; Morton DJ; Stull TL
    FEMS Microbiol Lett; 1998 Jan; 158(1):57-60. PubMed ID: 9453156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-level chloramphenicol resistance in Neisseria meningitidis.
    Galimand M; Gerbaud G; Guibourdenche M; Riou JY; Courvalin P
    N Engl J Med; 1998 Sep; 339(13):868-74. PubMed ID: 9744970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of a streptomycete leaderless mRNA encoding chloramphenicol acetyltransferase in Escherichia coli.
    Wu CJ; Janssen GR
    J Bacteriol; 1997 Nov; 179(21):6824-30. PubMed ID: 9352935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of a chloramphenicol acetyltransferase determinant found in the chromosome of Pseudomonas aeruginosa.
    White PA; Stokes HW; Bunny KL; Hall RM
    FEMS Microbiol Lett; 1999 Jun; 175(1):27-35. PubMed ID: 10361706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmid-mediated chloramphenicol resistance in Staphylococcus hyicus.
    Schwarz S; Cardoso M; Blobel H
    J Gen Microbiol; 1989 Dec; 135(12):3329-36. PubMed ID: 2636262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Molecular characterization of resistance mechanisms to chloramphenicol in Shigella flexneri strains isolated from Chilean children with acute diarrhea].
    Farfán M; Flores O; Navarro N; Prado V; Mora G; Toro C
    Rev Med Chil; 2002 Mar; 130(3):275-80. PubMed ID: 12043369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative sequence analysis of the catB gene from Clostridium butyricum.
    Huggins AS; Bannam TL; Rood JI
    Antimicrob Agents Chemother; 1992 Nov; 36(11):2548-51. PubMed ID: 1489203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical anatomy of antibiotic resistance: chloramphenicol acetyltransferase.
    Shaw WV
    Sci Prog; 1992; 76(301-302 Pt 3-4):565-80. PubMed ID: 1364583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study on the inhibitory actions of chloramphenicol, thiamphenicol and some fluorinated derivatives.
    Cannon M; Harford S; Davies J
    J Antimicrob Chemother; 1990 Sep; 26(3):307-17. PubMed ID: 2228823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.