BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 32247778)

  • 1. Efficacy for Differentiating Nonglaucomatous Versus Glaucomatous Optic Neuropathy Using Deep Learning Systems.
    Yang HK; Kim YJ; Sung JY; Kim DH; Kim KG; Hwang JM
    Am J Ophthalmol; 2020 Aug; 216():140-146. PubMed ID: 32247778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs.
    Li F; Yan L; Wang Y; Shi J; Chen H; Zhang X; Jiang M; Wu Z; Zhou K
    Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):851-867. PubMed ID: 31989285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.
    Li Z; He Y; Keel S; Meng W; Chang RT; He M
    Ophthalmology; 2018 Aug; 125(8):1199-1206. PubMed ID: 29506863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiating Glaucomatous Optic Neuropathy From Non-glaucomatous Optic Neuropathies Using Deep Learning Algorithms.
    Vali M; Mohammadi M; Zarei N; Samadi M; Atapour-Abarghouei A; Supakontanasan W; Suwan Y; Subramanian PS; Miller NR; Kafieh R; Aghsaei Fard M
    Am J Ophthalmol; 2023 Aug; 252():1-8. PubMed ID: 36868341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs.
    Phene S; Dunn RC; Hammel N; Liu Y; Krause J; Kitade N; Schaekermann M; Sayres R; Wu DJ; Bora A; Semturs C; Misra A; Huang AE; Spitze A; Medeiros FA; Maa AY; Gandhi M; Corrado GS; Peng L; Webster DR
    Ophthalmology; 2019 Dec; 126(12):1627-1639. PubMed ID: 31561879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of glaucomatous from non-glaucomatous optic neuropathy with swept-source optical coherence tomography.
    Matheu Fabra A; Saint-Gerons Trecu M; Quiroz Quiroga MJ; Armentia Pérez de Mendiola J; Martínez Palmer A; Martín Baranera M
    J Fr Ophtalmol; 2023 Oct; 46(8):941-948. PubMed ID: 37210297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs.
    Liu H; Li L; Wormstone IM; Qiao C; Zhang C; Liu P; Li S; Wang H; Mou D; Pang R; Yang D; Zangwill LM; Moghimi S; Hou H; Bowd C; Jiang L; Chen Y; Hu M; Xu Y; Kang H; Ji X; Chang R; Tham C; Cheung C; Ting DSW; Wong TY; Wang Z; Weinreb RN; Xu M; Wang N
    JAMA Ophthalmol; 2019 Dec; 137(12):1353-1360. PubMed ID: 31513266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model.
    Ko YC; Wey SY; Chen WT; Chang YF; Chen MJ; Chiou SH; Liu CJ; Lee CY
    PLoS One; 2020; 15(5):e0233079. PubMed ID: 32407355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yield of investigations in patients with questionable nonglaucomatous optic neuropathy.
    Donaldson L; Dezard V; Margolin E
    Can J Ophthalmol; 2023 Jun; 58(3):219-223. PubMed ID: 35123944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bruch's Membrane Opening Minimum Rim Width Provides Objective Differentiation between Glaucoma and Nonglaucomatous Optic Neuropathies.
    Leaney JC; Nguyen V; Miranda E; Barnett Y; Ahmad K; Wong S; Lawlor M
    Am J Ophthalmol; 2020 Oct; 218():164-172. PubMed ID: 32574771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing spectral-domain optical coherence tomography and standard automated perimetry to diagnose glaucomatous optic neuropathy.
    Rao HL; Yadav RK; Addepalli UK; Begum VU; Senthil S; Choudhari NS; Garudadri CS
    J Glaucoma; 2015; 24(5):e69-74. PubMed ID: 25144210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the Efficacy of Synthetic Optic Disc Images for Detecting Glaucomatous Optic Neuropathy Using Deep Learning.
    Chaurasia AK; MacGregor S; Craig JE; Mackey DA; Hewitt AW
    Transl Vis Sci Technol; 2024 Jun; 13(6):1. PubMed ID: 38829624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence in glaucoma detection using color fundus photographs.
    Sidhu Z; Mansoori T
    Indian J Ophthalmol; 2024 Mar; 72(3):408-411. PubMed ID: 38099383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Optic Disc Abnormalities in Color Fundus Photographs Using Deep Learning.
    Liu TYA; Wei J; Zhu H; Subramanian PS; Myung D; Yi PH; Hui FK; Unberath M; Ting DSW; Miller NR
    J Neuroophthalmol; 2021 Sep; 41(3):368-374. PubMed ID: 34415271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs.
    Medeiros FA; Jammal AA; Thompson AC
    Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a Deep Learning System For Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.
    Al-Aswad LA; Kapoor R; Chu CK; Walters S; Gong D; Garg A; Gopal K; Patel V; Sameer T; Rogers TW; Nicolas J; De Moraes GC; Moazami G
    J Glaucoma; 2019 Dec; 28(12):1029-1034. PubMed ID: 31233461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal Raphe Sign for Discrimination of Glaucoma from Optic Neuropathy in Eyes with Macular Ganglion Cell-Inner Plexiform Layer Thinning.
    Lee J; Kim YK; Ha A; Kim YW; Baek SU; Kim JS; Lee HJ; Kim DW; Jeoung JW; Kim SJ; Park KH
    Ophthalmology; 2019 Aug; 126(8):1131-1139. PubMed ID: 30576683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning for automated glaucomatous optic neuropathy detection from ultra-widefield fundus images.
    Li Z; Guo C; Lin D; Nie D; Zhu Y; Chen C; Zhao L; Wang J; Zhang X; Dongye M; Wang D; Xu F; Jin C; Zhang P; Han Y; Yan P; Han Y; Lin H
    Br J Ophthalmol; 2021 Nov; 105(11):1548-1554. PubMed ID: 32938630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma.
    Fortune B; Demirel S; Zhang X; Hood DC; Patterson E; Jamil A; Mansberger SL; Cioffi GA; Johnson CA
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1173-80. PubMed ID: 17325161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning and Transfer Learning for Optic Disc Laterality Detection: Implications for Machine Learning in Neuro-Ophthalmology.
    Liu TYA; Ting DSW; Yi PH; Wei J; Zhu H; Subramanian PS; Li T; Hui FK; Hager GD; Miller NR
    J Neuroophthalmol; 2020 Jun; 40(2):178-184. PubMed ID: 31453913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.