These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32247974)

  • 61. Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions.
    Zhang J; Zhang Y; Quan X; Chen S; Afzal S
    Bioresour Technol; 2013 May; 136():273-80. PubMed ID: 23567691
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Development of methanogens within cathodic biofilm in the single-chamber microbial electrolysis cell.
    Li X; Zeng C; Lu Y; Liu G; Luo H; Zhang R
    Bioresour Technol; 2019 Feb; 274():403-409. PubMed ID: 30551043
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Scaling-up up-flow microbial electrolysis cells with a compact electrode configuration for continuous hydrogen production.
    Singh L; Miller AG; Wang L; Liu H
    Bioresour Technol; 2021 Jul; 331():125030. PubMed ID: 33823486
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Multi-population model of a microbial electrolysis cell.
    Pinto RP; Srinivasan B; Escapa A; Tartakovsky B
    Environ Sci Technol; 2011 Jun; 45(11):5039-46. PubMed ID: 21534584
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evaluation of hydrogen production and internal resistance in forward osmosis membrane integrated microbial electrolysis cells.
    Lee MY; Kim KY; Yang E; Kim IS
    Bioresour Technol; 2015; 187():106-112. PubMed ID: 25841189
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A novel bio-electrochemical system with sand/activated carbon separator, Al anode and bio-anode integrated micro-electrolysis/electro-flocculation cost effectively treated high load wastewater with energy recovery.
    Gao C; Liu L; Yang F
    Bioresour Technol; 2018 Feb; 249():24-34. PubMed ID: 29040856
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Impact of volatile fatty acids on microbial electrolysis cell performance.
    Yang N; Hafez H; Nakhla G
    Bioresour Technol; 2015 Oct; 193():449-55. PubMed ID: 26159302
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Quantitative evaluation of effects of different cathode materials on performance in Cd(II)-reduced microbial electrolysis cells.
    Zhou R; Zhou S; He C
    Bioresour Technol; 2020 Jul; 307():123198. PubMed ID: 32217438
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The role of microbial electrolysis cell in urban wastewater treatment: integration options, challenges, and prospects.
    Katuri KP; Ali M; Saikaly PE
    Curr Opin Biotechnol; 2019 Jun; 57():101-110. PubMed ID: 30953903
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system.
    Jiang Y; Su M; Li D
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2720-31. PubMed ID: 24425301
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Processes and electron flow in a microbial electrolysis cell bioanode fed with furanic and phenolic compounds.
    Zeng X; Borole AP; Pavlostathis SG
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35981-35989. PubMed ID: 29558790
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evidence of competition between electrogens shaping electroactive microbial communities in microbial electrolysis cells.
    Abadikhah M; Rodriguez MC; Persson F; Wilén BM; Farewell A; Modin O
    Front Microbiol; 2022; 13():959211. PubMed ID: 36590422
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hydrogen peroxide production in a pilot-scale microbial electrolysis cell.
    Sim J; Reid R; Hussain A; An J; Lee HS
    Biotechnol Rep (Amst); 2018 Sep; 19():e00276. PubMed ID: 30197872
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ammonium Recovery and Biogas Upgrading in a Tubular Micro-Pilot Microbial Electrolysis Cell (MEC).
    Cristiani L; Zeppilli M; Porcu C; Majone M
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32545472
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Microbial electrolysis cells for waste biorefinery: A state of the art review.
    Lu L; Ren ZJ
    Bioresour Technol; 2016 Sep; 215():254-264. PubMed ID: 27020129
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations.
    Zhang F; Ahn Y; Logan BE
    Bioresour Technol; 2014; 152():46-52. PubMed ID: 24275025
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages.
    Gil-Carrera L; Escapa A; Carracedo B; Morán A; Gómez X
    Bioresour Technol; 2013 Oct; 146():63-69. PubMed ID: 23911817
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Surpassing the current limitations of high purity H
    Kadier A; Kalil MS; Chandrasekhar K; Mohanakrishna G; Saratale GD; Saratale RG; Kumar G; Pugazhendhi A; Sivagurunathan P
    Bioelectrochemistry; 2018 Feb; 119():211-219. PubMed ID: 29073521
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High current density via direct electron transfer by hyperthermophilic archaeon, Geoglobus acetivorans, in microbial electrolysis cells operated at 80 °C.
    Kas A; Yilmazel YD
    Bioelectrochemistry; 2022 Jun; 145():108072. PubMed ID: 35144167
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell.
    Zeppilli M; Villano M; Aulenta F; Lampis S; Vallini G; Majone M
    Environ Sci Pollut Res Int; 2015 May; 22(10):7349-60. PubMed ID: 24994102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.