These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 32247976)
1. Regional measurements and spatial/temporal analysis of CDOM in 10,000+ optically variable Minnesota lakes using Landsat 8 imagery. Olmanson LG; Page BP; Finlay JC; Brezonik PL; Bauer ME; Griffin CG; Hozalski RM Sci Total Environ; 2020 Jul; 724():138141. PubMed ID: 32247976 [TBL] [Abstract][Full Text] [Related]
2. Color, chlorophyll a, and suspended solids effects on Secchi depth in lakes: implications for trophic state assessment. Brezonik PL; Bouchard RW; Finlay JC; Griffin CG; Olmanson LG; Anderson JP; Arnold WA; Hozalski R Ecol Appl; 2019 Apr; 29(3):e01871. PubMed ID: 30739365 [TBL] [Abstract][Full Text] [Related]
3. Prediction of Photochemically Produced Reactive Intermediates in Surface Waters via Satellite Remote Sensing. Chen Y; Hozalski RM; Olmanson LG; Page BP; Finlay JC; Brezonik PL; Arnold WA Environ Sci Technol; 2020 Jun; 54(11):6671-6681. PubMed ID: 32383589 [TBL] [Abstract][Full Text] [Related]
4. Remote sensing of CDOM and DOC in alpine lakes across the Qinghai-Tibet Plateau using Sentinel-2A imagery data. Liu G; Li S; Song K; Wang X; Wen Z; Kutser T; Jacinthe PA; Shang Y; Lyu L; Fang C; Yang Y; Yang Q; Zhang B; Cheng S; Hou J J Environ Manage; 2021 May; 286():112231. PubMed ID: 33706125 [TBL] [Abstract][Full Text] [Related]
5. Limitations on using CDOM as a proxy for DOC in temperate lakes. Griffin CG; Finlay JC; Brezonik PL; Olmanson L; Hozalski RM Water Res; 2018 Nov; 144():719-727. PubMed ID: 30099300 [TBL] [Abstract][Full Text] [Related]
6. Iron influence on dissolved color in lakes of the Upper Great Lakes States. Brezonik PL; Finlay JC; Griffin CG; Arnold WA; Boardman EH; Germolus N; Hozalski RM; Olmanson LG PLoS One; 2019; 14(2):e0211979. PubMed ID: 30759145 [TBL] [Abstract][Full Text] [Related]
7. Assessment of the chlorine demand and disinfection byproduct formation potential of surface waters via satellite remote sensing. Chen Y; Arnold WA; Griffin CG; Olmanson LG; Brezonik PL; Hozalski RM Water Res; 2019 Nov; 165():115001. PubMed ID: 31470281 [TBL] [Abstract][Full Text] [Related]
8. Landsat 8-observed water quality and its coupled environmental factors for urban scenery lakes: A case study of West Lake. Zhu W; Huang L; Sun N; Chen J; Pang S Water Environ Res; 2020 Feb; 92(2):255-265. PubMed ID: 31512801 [TBL] [Abstract][Full Text] [Related]
9. [Study on colored dissolved organic matter concentration retrieved from Landsat/TM imagery at Taihu Lake]. Chen J; Wang BJ; Sun JH; Fu J Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan; 31(1):34-8. PubMed ID: 21428050 [TBL] [Abstract][Full Text] [Related]
10. Using CDOM spectral shape information to improve the estimation of DOC concentration in inland waters: A case study of Andean Patagonian Lakes. De Stefano LG; Valdivia AS; Gianello D; Gerea M; Reissig M; García PE; García RD; Cárdenas CS; Diéguez MC; Queimaliños CP; Pérez GL Sci Total Environ; 2022 Jun; 824():153752. PubMed ID: 35176388 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Two Water Color Algorithms: Implications for the Remote Sensing of Water Bodies with Moderate to High CDOM or Chlorophyll Levels. Burket MO; Olmanson LG; Brezonik PL Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772113 [TBL] [Abstract][Full Text] [Related]
12. A unified model for high resolution mapping of global lake (>1 ha) clarity using Landsat imagery data. Song K; Wang Q; Liu G; Jacinthe PA; Li S; Tao H; Du Y; Wen Z; Wang X; Guo W; Wang Z; Shi K; Du J; Shang Y; Lyu L; Hou J; Zhang B; Cheng S; Lyu Y; Fei L Sci Total Environ; 2022 Mar; 810():151188. PubMed ID: 34710411 [TBL] [Abstract][Full Text] [Related]
13. [Estimation of DOC concentrations using CDOM absorption coefficients: a case study in Taihu Lake]. Jiang GJ; Ma RH; Duan HT Huan Jing Ke Xue; 2012 Jul; 33(7):2235-43. PubMed ID: 23002596 [TBL] [Abstract][Full Text] [Related]
14. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication. Zhang Y; Zhou Y; Shi K; Qin B; Yao X; Zhang Y Water Res; 2018 Mar; 131():255-263. PubMed ID: 29304379 [TBL] [Abstract][Full Text] [Related]
15. Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: A case study of Dongting Lake. Zheng Z; Ren J; Li Y; Huang C; Liu G; Du C; Lyu H Sci Total Environ; 2016 Dec; 573():39-54. PubMed ID: 27552729 [TBL] [Abstract][Full Text] [Related]
16. Inflow rate-driven changes in the composition and dynamics of chromophoric dissolved organic matter in a large drinking water lake. Zhou Y; Zhang Y; Jeppesen E; Murphy KR; Shi K; Liu M; Liu X; Zhu G Water Res; 2016 Sep; 100():211-221. PubMed ID: 27192356 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of chromophoric dissolved organic matter influenced by hydrological conditions in a large, shallow, and eutrophic lake in China. Zhou Y; Zhang Y; Shi K; Liu X; Niu C Environ Sci Pollut Res Int; 2015 Sep; 22(17):12992-3003. PubMed ID: 25916473 [TBL] [Abstract][Full Text] [Related]
18. Remote sensing estimation of colored dissolved organic matter (CDOM) from GOCI measurements in the Bohai Sea and Yellow Sea. Ling Z; Sun D; Wang S; Qiu Z; Huan Y; Mao Z; He Y Environ Sci Pollut Res Int; 2020 Mar; 27(7):6872-6885. PubMed ID: 31875926 [TBL] [Abstract][Full Text] [Related]
19. Estimation of dissolved organic carbon from inland waters at a large scale using satellite data and machine learning methods. Harkort L; Duan Z Water Res; 2023 Feb; 229():119478. PubMed ID: 36527868 [TBL] [Abstract][Full Text] [Related]
20. Characterization of CDOM absorption of reservoirs with its linkage of regions and ages across China. Shang Y; Song K; Wen Z; Lyu L; Zhao Y; Fang C; Zhang B Environ Sci Pollut Res Int; 2018 Jun; 25(16):16009-16023. PubMed ID: 29589248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]