These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 32248067)

  • 1. Selective recovery of lithium and iron phosphate/carbon from spent lithium iron phosphate cathode material by anionic membrane slurry electrolysis.
    Li Z; Liu D; Xiong J; He L; Zhao Z; Wang D
    Waste Manag; 2020 Apr; 107():1-8. PubMed ID: 32248067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective recovery of Li and FePO
    Kumar J; Shen X; Li B; Liu H; Zhao J
    Waste Manag; 2020 Jul; 113():32-40. PubMed ID: 32505109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical selective lithium extraction and regeneration of spent lithium iron phosphate.
    Qin Z; Li X; Shen X; Cheng Y; Wu F; Li Y; He Z
    Waste Manag; 2024 Feb; 174():106-113. PubMed ID: 38041979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective leaching process for efficient and rapid recycling of spent lithium iron phosphate batteries.
    Xiong Y; Guo Z; Mei T; Han Y; Wang Y; Xiong X; Tang Y; Wang X
    Waste Manag Res; 2023 Nov; 41(11):1613-1621. PubMed ID: 37102334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-Free and Selective Extraction of Lithium from Spent Lithium Iron Phosphate Batteries via a Mechanochemically Induced Isomorphic Substitution.
    Liu K; Tan Q; Liu L; Li J
    Environ Sci Technol; 2019 Aug; 53(16):9781-9788. PubMed ID: 31339306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective recovery of lithium from spent lithium iron phosphate batteries.
    Wu Y; Li G; Zhao S; Yin Y; Wang B; He W
    Waste Manag Res; 2024 Jan; ():734242X241227375. PubMed ID: 38268141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal preparation and performance of LiFePO
    Wang X; Wang X; Zhang R; Wang Y; Shu H
    Waste Manag; 2018 Aug; 78():208-216. PubMed ID: 32559906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling of cathode from spent lithium iron phosphate batteries.
    Yadav P; Jie CJ; Tan S; Srinivasan M
    J Hazard Mater; 2020 Nov; 399():123068. PubMed ID: 32521319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A green and effective room-temperature recycling process of LiFePO
    Li L; Bian Y; Zhang X; Yao Y; Xue Q; Fan E; Wu F; Chen R
    Waste Manag; 2019 Feb; 85():437-444. PubMed ID: 30803599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfuric acid leaching of ball-milling activated FePO
    Wang XJ; Zheng SL; Zhang Y; Zhang Y; Qiao S; Long ZQ; Zhao B; Li ZF
    Waste Manag; 2022 Nov; 153():31-40. PubMed ID: 36049270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A green process for phosphorus recovery from spent LiFePO
    He K; Zhang ZY; Zhang FS
    J Hazard Mater; 2020 Aug; 395():122614. PubMed ID: 32302882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sustainable closed-loop method of selective oxidation leaching and regeneration for lithium iron phosphate cathode materials from spent batteries.
    Gong R; Li C; Meng Q; Dong P; Zhang Y; Zhang B; Yan J; Li Y
    J Environ Manage; 2022 Oct; 319():115740. PubMed ID: 35868192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching.
    Li L; Bian Y; Zhang X; Guan Y; Fan E; Wu F; Chen R
    Waste Manag; 2018 Jan; 71():362-371. PubMed ID: 29110940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step selective separation and efficient recovery of valuable metals from mixed spent lithium batteries in the phosphoric acid system.
    Zhou X; Yang W; Liu X; Tang J; Su F; Li Z; Yang J; Ma Y
    Waste Manag; 2023 Jan; 155():53-64. PubMed ID: 36343600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium.
    Chen X; Cao L; Kang D; Li J; Zhou T; Ma H
    Waste Manag; 2018 Oct; 80():198-210. PubMed ID: 30455000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A perspective on the recovery mechanisms of spent lithium iron phosphate cathode materials in different oxidation environments.
    Liu K; Wang M; Zhang Q; Xu Z; Labianca C; Komárek M; Gao B; Tsang DCW
    J Hazard Mater; 2023 Mar; 445():130502. PubMed ID: 36493647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction.
    Li D; Huang Y; Sharma N; Chen Z; Jia D; Guo Z
    Phys Chem Chem Phys; 2012 Mar; 14(10):3634-9. PubMed ID: 22311165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of Li
    Chen WL; Chen C; Xiao H; Chen CW; Sun D
    Molecules; 2023 May; 28(9):. PubMed ID: 37175314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.