These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. X-ray structure breakthroughs in the GPCR transmembrane region. Topiol S; Sabio M Biochem Pharmacol; 2009 Jul; 78(1):11-20. PubMed ID: 19447219 [TBL] [Abstract][Full Text] [Related]
6. Relevance of rhodopsin studies for GPCR activation. Deupi X Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646 [TBL] [Abstract][Full Text] [Related]
7. Bitter Taste and Olfactory Receptors: Beyond Chemical Sensing in the Tongue and the Nose. Alfonso-Prieto M J Membr Biol; 2021 Aug; 254(4):343-352. PubMed ID: 34173018 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of rhodopsin: implications for vision and beyond. Okada T; Palczewski K Curr Opin Struct Biol; 2001 Aug; 11(4):420-6. PubMed ID: 11495733 [TBL] [Abstract][Full Text] [Related]
9. Decay of an active GPCR: Conformational dynamics govern agonist rebinding and persistence of an active, yet empty, receptor state. Schafer CT; Fay JF; Janz JM; Farrens DL Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11961-11966. PubMed ID: 27702898 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of G-protein activation by rhodopsin. Shichida Y; Morizumi T Photochem Photobiol; 2007; 83(1):70-5. PubMed ID: 16800722 [TBL] [Abstract][Full Text] [Related]
11. The G protein-coupled receptor rhodopsin: a historical perspective. Hofmann L; Palczewski K Methods Mol Biol; 2015; 1271():3-18. PubMed ID: 25697513 [TBL] [Abstract][Full Text] [Related]
12. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. Bhattacharya S; Hall SE; Vaidehi N J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Park JH; Scheerer P; Hofmann KP; Choe HW; Ernst OP Nature; 2008 Jul; 454(7201):183-7. PubMed ID: 18563085 [TBL] [Abstract][Full Text] [Related]
14. A molecular spring for vision. Röhrig UF; Guidoni L; Laio A; Frank I; Rothlisberger U J Am Chem Soc; 2004 Dec; 126(47):15328-9. PubMed ID: 15563129 [TBL] [Abstract][Full Text] [Related]
15. New prospects for drug discovery from structural studies of rhodopsin. Bosch L; Iarriccio L; Garriga P Curr Pharm Des; 2005; 11(17):2243-56. PubMed ID: 16026293 [TBL] [Abstract][Full Text] [Related]
16. Strategies and considerations of G-protein-coupled receptor photopharmacology. Berizzi AE; Goudet C Adv Pharmacol; 2020; 88():143-172. PubMed ID: 32416866 [TBL] [Abstract][Full Text] [Related]
17. Transmembrane signaling by GPCRs: insight from rhodopsin and opsin structures. Choe HW; Park JH; Kim YJ; Ernst OP Neuropharmacology; 2011 Jan; 60(1):52-7. PubMed ID: 20708633 [TBL] [Abstract][Full Text] [Related]
18. GPCR photopharmacology. Ricart-Ortega M; Font J; Llebaria A Mol Cell Endocrinol; 2019 May; 488():36-51. PubMed ID: 30862498 [TBL] [Abstract][Full Text] [Related]
19. The role of water molecules in phototransduction of retinal proteins and G protein-coupled receptors. Lesca E; Panneels V; Schertler GFX Faraday Discuss; 2018 Apr; 207(0):27-37. PubMed ID: 29410984 [TBL] [Abstract][Full Text] [Related]
20. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization. Ritter E; Zimmermann K; Heck M; Hofmann KP; Bartl FJ J Biol Chem; 2004 Nov; 279(46):48102-11. PubMed ID: 15322129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]