These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 32248312)

  • 1. The Impact of Elastic Deformations of the Extracellular Matrix on Cell Migration.
    Malik AA; Wennberg B; Gerlee P
    Bull Math Biol; 2020 Apr; 82(4):49. PubMed ID: 32248312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modelling of cell migration: stiffness dependent jump rates result in durotaxis.
    Malik AA; Gerlee P
    J Math Biol; 2019 Jun; 78(7):2289-2315. PubMed ID: 30972438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cellular Potts Model of single cell migration in presence of durotaxis.
    Allena R; Scianna M; Preziosi L
    Math Biosci; 2016 May; 275():57-70. PubMed ID: 26968932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modeling of three-dimensional ECM-rigidity sensing to guide directed cell migration.
    Kim MC; Silberberg YR; Abeyaratne R; Kamm RD; Asada HH
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):E390-E399. PubMed ID: 29295934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A force based model of individual cell migration with discrete attachment sites and random switching terms.
    Dallon JC; Scott M; Smith WV
    J Biomech Eng; 2013 Jul; 135(7):71008. PubMed ID: 23722520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid computational model for collective cell durotaxis.
    Escribano J; Sunyer R; Sánchez MT; Trepat X; Roca-Cusachs P; García-Aznar JM
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1037-1052. PubMed ID: 29500553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex matrix remodeling and durotaxis can emerge from simple rules for cell-matrix interaction in agent-based models.
    Reinhardt JW; Krakauer DA; Gooch KJ
    J Biomech Eng; 2013 Jul; 135(7):71003. PubMed ID: 23722647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.
    Checa S; Rausch MK; Petersen A; Kuhl E; Duda GN
    Biomech Model Mechanobiol; 2015 Jan; 14(1):1-13. PubMed ID: 24718853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic gel-strip model for the simulation of migrating cells.
    Sakamoto Y; Prudhomme S; Zaman MH
    Ann Biomed Eng; 2011 Nov; 39(11):2735-49. PubMed ID: 21800204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Durotaxis by Human Cancer Cells.
    DuChez BJ; Doyle AD; Dimitriadis EK; Yamada KM
    Biophys J; 2019 Feb; 116(4):670-683. PubMed ID: 30709621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing mechanical principles of focal contacts in cell-matrix adhesion with a coupled stochastic-elastic modelling framework.
    Gao H; Qian J; Chen B
    J R Soc Interface; 2011 Sep; 8(62):1217-32. PubMed ID: 21632610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of matrix stiffness on biomechanical properties of chondrocytes.
    Zhang Q; Yu Y; Zhao H
    Acta Biochim Biophys Sin (Shanghai); 2016 Oct; 48(10):958-965. PubMed ID: 27590061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix.
    Kim MC; Kim C; Wood L; Neal D; Kamm RD; Asada HH
    Integr Biol (Camb); 2012 Nov; 4(11):1386-97. PubMed ID: 22990282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the impact of matrix anchorage and elasticity in cell adhesion.
    Pompe T; Glorius S; Bischoff T; Uhlmann I; Kaufmann M; Brenner S; Werner C
    Biophys J; 2009 Oct; 97(8):2154-63. PubMed ID: 19843448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of adhesion, protrusion, and contraction coordination for cell migration simulations.
    Sakamoto Y; Prudhomme S; Zaman MH
    J Math Biol; 2014 Jan; 68(1-2):267-302. PubMed ID: 23263301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cost-benefit analysis of the mechanisms that enable migrating cells to sustain motility upon changes in matrix environments.
    Tozluoglu M; Mao Y; Bates PA; Sahai E
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25878128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical model of mechano-sensing and mechanically induced collective motility of cells on planar elastic substrates.
    Ahmed RK; Abdalrahman T; Davies NH; Vermolen F; Franz T
    Biomech Model Mechanobiol; 2023 Jun; 22(3):809-824. PubMed ID: 36814004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiscale whole-cell theory for mechanosensitive migration on viscoelastic substrates.
    Shu W; Kaplan CN
    Biophys J; 2023 Jan; 122(1):114-129. PubMed ID: 36493781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Durotaxis.
    Sunyer R; Trepat X
    Curr Biol; 2020 May; 30(9):R383-R387. PubMed ID: 32369745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General cellular durotaxis induced with cell-scale heterogeneity of matrix-elasticity.
    Ebata H; Moriyama K; Kuboki T; Kidoaki S
    Biomaterials; 2020 Feb; 230():119647. PubMed ID: 31791844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.