These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32248588)

  • 1. Arabidopsis thaliana SURFEIT1-like genes link mitochondrial function to early plant development and hormonal growth responses.
    Gras DE; Mansilla N; Rodríguez C; Welchen E; Gonzalez DH
    Plant J; 2020 Jul; 103(2):690-704. PubMed ID: 32248588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hormonal interactions in the control of Arabidopsis hypocotyl elongation.
    Collett CE; Harberd NP; Leyser O
    Plant Physiol; 2000 Oct; 124(2):553-62. PubMed ID: 11027706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Class I TCP Transcription Factors Target the Gibberellin Biosynthesis Gene GA20ox1 and the Growth-Promoting Genes HBI1 and PRE6 during Thermomorphogenic Growth in Arabidopsis.
    Ferrero V; Viola IL; Ariel FD; Gonzalez DH
    Plant Cell Physiol; 2019 Aug; 60(8):1633-1645. PubMed ID: 31292642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gibberellin driven growth in elf3 mutants requires PIF4 and PIF5.
    Filo J; Wu A; Eliason E; Richardson T; Thines BC; Harmon FG
    Plant Signal Behav; 2015; 10(3):e992707. PubMed ID: 25738547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of hypocotyl elongation by LOV KELCH PROTEIN2 production is mediated by auxin and phytochrome-interacting factors in Arabidopsis thaliana.
    Miyazaki Y; Jikumaru Y; Takase T; Saitoh A; Sugitani A; Kamiya Y; Kiyosue T
    Plant Cell Rep; 2016 Feb; 35(2):455-67. PubMed ID: 26601822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three Auxin Response Factors Promote Hypocotyl Elongation.
    Reed JW; Wu MF; Reeves PH; Hodgens C; Yadav V; Hayes S; Pierik R
    Plant Physiol; 2018 Oct; 178(2):864-875. PubMed ID: 30139794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis.
    Suzuki M; Yamazaki C; Mitsui M; Kakei Y; Mitani Y; Nakamura A; Ishii T; Soeno K; Shimada Y
    Plant Cell Rep; 2015 Aug; 34(8):1343-52. PubMed ID: 25903543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport.
    Lin R; Wang H
    Plant Physiol; 2005 Jun; 138(2):949-64. PubMed ID: 15908594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hormonal regulation of temperature-induced growth in Arabidopsis.
    Stavang JA; Gallego-Bartolomé J; Gómez MD; Yoshida S; Asami T; Olsen JE; García-Martínez JL; Alabadí D; Blázquez MA
    Plant J; 2009 Nov; 60(4):589-601. PubMed ID: 19686536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plants contain two SCO proteins that are differentially involved in cytochrome c oxidase function and copper and redox homeostasis.
    Attallah CV; Welchen E; Martin AP; Spinelli SV; Bonnard G; Palatnik JF; Gonzalez DH
    J Exp Bot; 2011 Aug; 62(12):4281-94. PubMed ID: 21543521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of PRE1 and its homologous genes activates Gibberellin-dependent responses in Arabidopsis thaliana.
    Lee S; Lee S; Yang KY; Kim YM; Park SY; Kim SY; Soh MS
    Plant Cell Physiol; 2006 May; 47(5):591-600. PubMed ID: 16527868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation.
    Chae K; Isaacs CG; Reeves PH; Maloney GS; Muday GK; Nagpal P; Reed JW
    Plant J; 2012 Aug; 71(4):684-97. PubMed ID: 22507274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis.
    Lee HJ; Jung JH; Cortés Llorca L; Kim SG; Lee S; Baldwin IT; Park CM
    Nat Commun; 2014 Nov; 5():5473. PubMed ID: 25400039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brassinosteroids Dominate Hormonal Regulation of Plant Thermomorphogenesis via BZR1.
    Ibañez C; Delker C; Martinez C; Bürstenbinder K; Janitza P; Lippmann R; Ludwig W; Sun H; James GV; Klecker M; Grossjohann A; Schneeberger K; Prat S; Quint M
    Curr Biol; 2018 Jan; 28(2):303-310.e3. PubMed ID: 29337075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IPyA glucosylation mediates light and temperature signaling to regulate auxin-dependent hypocotyl elongation in
    Chen L; Huang XX; Zhao SM; Xiao DW; Xiao LT; Tong JH; Wang WS; Li YJ; Ding Z; Hou BK
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6910-6917. PubMed ID: 32152121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Arabidopsis RLCK VI_A2 Kinase Controls Seedling and Plant Growth in Parallel with Gibberellin.
    Valkai I; Kénesi E; Domonkos I; Ayaydin F; Tarkowská D; Strnad M; Faragó A; Bodai L; Fehér A
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33019674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species and reactive carbonyl species constitute a feed-forward loop in auxin signaling for lateral root formation.
    Biswas MS; Fukaki H; Mori IC; Nakahara K; Mano J
    Plant J; 2019 Nov; 100(3):536-548. PubMed ID: 31306517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination.
    Chiwocha SD; Cutler AJ; Abrams SR; Ambrose SJ; Yang J; Ross AR; Kermode AR
    Plant J; 2005 Apr; 42(1):35-48. PubMed ID: 15773852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana.
    Kunihiro A; Yamashino T; Nakamichi N; Niwa Y; Nakanishi H; Mizuno T
    Plant Cell Physiol; 2011 Aug; 52(8):1315-29. PubMed ID: 21666227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.