BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32248686)

  • 1. Nanoscale Metal-Organic Frameworks Stabilize Bacteriochlorins for Type I and Type II Photodynamic Therapy.
    Luo T; Ni K; Culbert A; Lan G; Li Z; Jiang X; Kaufmann M; Lin W
    J Am Chem Soc; 2020 Apr; 142(16):7334-7339. PubMed ID: 32248686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Titanium-Based Nanoscale Metal-Organic Framework for Type I Photodynamic Therapy.
    Lan G; Ni K; Veroneau SS; Feng X; Nash GT; Luo T; Xu Z; Lin W
    J Am Chem Soc; 2019 Mar; 141(10):4204-4208. PubMed ID: 30779556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale Two-Dimensional Fe
    Li Q; Xu BW; Zou YM; Niu RJ; Chen JX; Zhang WH; Young DJ
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Organic Frameworks with Enhanced Photodynamic Therapy: Synthesis, Erythrocyte Membrane Camouflage, and Aptamer-Targeted Aggregation.
    Zhao Y; Wang J; Cai X; Ding P; Lv H; Pei R
    ACS Appl Mater Interfaces; 2020 May; 12(21):23697-23706. PubMed ID: 32362109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mn-Porphyrin-Based Metal-Organic Framework with High Longitudinal Relaxivity for Magnetic Resonance Imaging Guidance and Oxygen Self-Supplementing Photodynamic Therapy.
    He M; Chen Y; Tao C; Tian Q; An L; Lin J; Tian Q; Yang H; Yang S
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):41946-41956. PubMed ID: 31638766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamer-functionalized nanoscale metal-organic frameworks for targeted photodynamic therapy.
    Meng HM; Hu XX; Kong GZ; Yang C; Fu T; Li ZH; Zhang XB
    Theranostics; 2018; 8(16):4332-4344. PubMed ID: 30214624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upconversion Nanoparticle-Induced Multimode Photodynamic Therapy Based on a Metal-Organic Framework/Titanium Dioxide Nanocomposite.
    Shi Z; Zhang K; Zada S; Zhang C; Meng X; Yang Z; Dong H
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12600-12608. PubMed ID: 32096623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined effects of singlet oxygen and hydroxyl radical in photodynamic therapy with photostable bacteriochlorins: evidence from intracellular fluorescence and increased photodynamic efficacy in vitro.
    Dąbrowski JM; Arnaut LG; Pereira MM; Urbańska K; Simões S; Stochel G; Cortes L
    Free Radic Biol Med; 2012 Apr; 52(7):1188-200. PubMed ID: 22285766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of singlet-oxygen and superoxide-ion generation by porphyrins and bacteriochlorins and their implications in photodynamic therapy.
    Silva EF; Serpa C; Dabrowski JM; Monteiro CJ; Formosinho SJ; Stochel G; Urbanska K; Simões S; Pereira MM; Arnaut LG
    Chemistry; 2010 Aug; 16(30):9273-86. PubMed ID: 20572171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscaled porphyrinic metal-organic framework for photodynamic/photothermal therapy of tumor.
    Wang S; Chen W; Jiang C; Lu L
    Electrophoresis; 2019 Aug; 40(16-17):2204-2210. PubMed ID: 30953373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile nanoplatform based on multivariate porphyrinic metal-organic frameworks for catalytic cascade-enhanced photodynamic therapy.
    Ren SZ; Zhu XH; Wang B; Liu M; Li SK; Yang YS; An H; Zhu HL
    J Mater Chem B; 2021 Jun; 9(23):4678-4689. PubMed ID: 34075929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent Imaging-Guided Chemotherapy-and-Photodynamic Dual Therapy with Nanoscale Porphyrin Metal-Organic Framework.
    Liu W; Wang YM; Li YH; Cai SJ; Yin XB; He XW; Zhang YK
    Small; 2017 May; 13(17):. PubMed ID: 28244202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Metal-Organic Layers for Radiotherapy-Radiodynamic Therapy.
    Lan G; Ni K; Veroneau SS; Song Y; Lin W
    J Am Chem Soc; 2018 Dec; 140(49):16971-16975. PubMed ID: 30485084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triggered All-Active Metal Organic Framework: Ferroptosis Machinery Contributes to the Apoptotic Photodynamic Antitumor Therapy.
    Meng X; Deng J; Liu F; Guo T; Liu M; Dai P; Fan A; Wang Z; Zhao Y
    Nano Lett; 2019 Nov; 19(11):7866-7876. PubMed ID: 31594301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimensional Reduction Enhances Photodynamic Therapy of Metal-Organic Nanophotosensitizers.
    Luo T; Fan Y; Mao J; Yuan E; You E; Xu Z; Lin W
    J Am Chem Soc; 2022 Mar; 144(12):5241-5246. PubMed ID: 35297640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale Metal-Organic Framework Hierarchically Combines High-Z Components for Multifarious Radio-Enhancement.
    Lan G; Ni K; Veroneau SS; Luo T; You E; Lin W
    J Am Chem Soc; 2019 May; 141(17):6859-6863. PubMed ID: 30998341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorin-Based Nanoscale Metal-Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapy and Checkpoint Blockade Immunotherapy.
    Lu K; He C; Guo N; Chan C; Ni K; Weichselbaum RR; Lin W
    J Am Chem Soc; 2016 Sep; 138(38):12502-10. PubMed ID: 27575718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photodynamic Therapy Based on Nanoscale Metal-Organic Frameworks: From Material Design to Cancer Nanotherapeutics.
    Guan Q; Li YA; Li WY; Dong YB
    Chem Asian J; 2018 Nov; 13(21):3122-3149. PubMed ID: 30183134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Pot Synthetic Approach toward Porphyrinatozinc and Heavy-Atom Involved Zr-NMOF and Its Application in Photodynamic Therapy.
    Zhou LL; Guan Q; Li YA; Zhou Y; Xin YB; Dong YB
    Inorg Chem; 2018 Mar; 57(6):3169-3176. PubMed ID: 29488754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postsynthetic Ligand Exchange of Metal-Organic Framework for Photodynamic Therapy.
    Zhao X; Zhang Z; Cai X; Ding B; Sun C; Liu G; Hu C; Shao S; Pang M
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7884-7892. PubMed ID: 30698413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.