These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 32248781)

  • 21. No effect of targeted memory reactivation during slow-wave sleep on emotional recognition memory.
    Ashton JE; Cairney SA; Gaskell MG
    J Sleep Res; 2018 Feb; 27(1):129-137. PubMed ID: 28493346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cueing emotional memories during slow wave sleep modulates next-day activity in the orbitofrontal cortex and the amygdala.
    Pereira SIR; Tsimpanouli ME; Hutchison I; Schneider J; Anderson IM; McFarquhar M; Elliott R; Lewis PA
    Neuroimage; 2022 Jun; 253():119120. PubMed ID: 35331867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A consensus statement: defining terms for reactivation analysis.
    Genzel L; Dragoi G; Frank L; Ganguly K; de la Prida L; Pfeiffer B; Robertson E
    Philos Trans R Soc Lond B Biol Sci; 2020 May; 375(1799):20200001. PubMed ID: 32248790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell Assemblies in the Cortico-Hippocampal-Reuniens Network during Slow Oscillations.
    Angulo-Garcia D; Ferraris M; Ghestem A; Nallet-Khosrofian L; Bernard C; Quilichini PP
    J Neurosci; 2020 Oct; 40(43):8343-8354. PubMed ID: 32994338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Nucleus Reuniens Controls Long-Range Hippocampo-Prefrontal Gamma Synchronization during Slow Oscillations.
    Ferraris M; Ghestem A; Vicente AF; Nallet-Khosrofian L; Bernard C; Quilichini PP
    J Neurosci; 2018 Mar; 38(12):3026-3038. PubMed ID: 29459369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hippocampo-cortical coupling mediates memory consolidation during sleep.
    Maingret N; Girardeau G; Todorova R; Goutierre M; Zugaro M
    Nat Neurosci; 2016 Jul; 19(7):959-64. PubMed ID: 27182818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hippocampal CA2 sharp-wave ripples reactivate and promote social memory.
    Oliva A; Fernández-Ruiz A; Leroy F; Siegelbaum SA
    Nature; 2020 Nov; 587(7833):264-269. PubMed ID: 32968277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The essential role of hippocampo-cortical connections in temporal coordination of spindles and ripples.
    Azimi A; Alizadeh Z; Ghorbani M
    Neuroimage; 2021 Nov; 243():118485. PubMed ID: 34425227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Odor-evoked category reactivation in human ventromedial prefrontal cortex during sleep promotes memory consolidation.
    Shanahan LK; Gjorgieva E; Paller KA; Kahnt T; Gottfried JA
    Elife; 2018 Dec; 7():. PubMed ID: 30560782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experience and sleep-dependent synaptic plasticity: from structure to activity.
    Sun L; Zhou H; Cichon J; Yang G
    Philos Trans R Soc Lond B Biol Sci; 2020 May; 375(1799):20190234. PubMed ID: 32248786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hippocampal Reactivation Extends for Several Hours Following Novel Experience.
    Giri B; Miyawaki H; Mizuseki K; Cheng S; Diba K
    J Neurosci; 2019 Jan; 39(5):866-875. PubMed ID: 30530857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Odor cueing during slow-wave sleep benefits memory independently of low cholinergic tone.
    Klinzing JG; Kugler S; Soekadar SR; Rasch B; Born J; Diekelmann S
    Psychopharmacology (Berl); 2018 Jan; 235(1):291-299. PubMed ID: 29119218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconfiguration of the cortical-hippocampal interaction may compensate for Sharp-Wave Ripple deficits in APP/PS1 mice and support spatial memory formation.
    Jura B; Młoźniak D; Goszczyńska H; Blinowska K; Biendon N; Macrez N; Meyrand P; Bem T
    PLoS One; 2020; 15(12):e0243767. PubMed ID: 33382724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The nucleus reuniens, a thalamic relay for cortico-hippocampal interaction in recent and remote memory consolidation.
    Ferraris M; Cassel JC; Pereira de Vasconcelos A; Stephan A; Quilichini PP
    Neurosci Biobehav Rev; 2021 Jun; 125():339-354. PubMed ID: 33631314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples.
    Karimi Abadchi J; Nazari-Ahangarkolaee M; Gattas S; Bermudez-Contreras E; Luczak A; McNaughton BL; Mohajerani MH
    Elife; 2020 Mar; 9():. PubMed ID: 32167467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the methods for reactivation and replay analysis.
    Tingley D; Peyrache A
    Philos Trans R Soc Lond B Biol Sci; 2020 May; 375(1799):20190231. PubMed ID: 32248787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Roles of Cortical Slow Waves in Synaptic Plasticity and Memory Consolidation.
    Miyamoto D; Hirai D; Murayama M
    Front Neural Circuits; 2017; 11():92. PubMed ID: 29213231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep.
    Mölle M; Yeshenko O; Marshall L; Sara SJ; Born J
    J Neurophysiol; 2006 Jul; 96(1):62-70. PubMed ID: 16611848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selection of stimulus parameters for enhancing slow wave sleep events with a neural-field theory thalamocortical model.
    Torres FA; Orio P; Escobar MJ
    PLoS Comput Biol; 2021 Jul; 17(7):e1008758. PubMed ID: 34329289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase-amplitude coupling of sleep slow oscillatory and spindle activity correlates with overnight memory consolidation.
    Mikutta C; Feige B; Maier JG; Hertenstein E; Holz J; Riemann D; Nissen C
    J Sleep Res; 2019 Dec; 28(6):e12835. PubMed ID: 30848042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.