These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

459 related articles for article (PubMed ID: 32248786)

  • 41. Ripple-triggered stimulation of the locus coeruleus during post-learning sleep disrupts ripple/spindle coupling and impairs memory consolidation.
    Novitskaya Y; Sara SJ; Logothetis NK; Eschenko O
    Learn Mem; 2016 May; 23(5):238-48. PubMed ID: 27084931
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cellular and molecular connections between sleep and synaptic plasticity.
    Benington JH; Frank MG
    Prog Neurobiol; 2003 Feb; 69(2):71-101. PubMed ID: 12684067
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential roles of sleep spindles and sleep slow oscillations in memory consolidation.
    Wei Y; Krishnan GP; Komarov M; Bazhenov M
    PLoS Comput Biol; 2018 Jul; 14(7):e1006322. PubMed ID: 29985966
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Causal role for sleep-dependent reactivation of learning-activated sensory ensembles for fear memory consolidation.
    Clawson BC; Pickup EJ; Ensing A; Geneseo L; Shaver J; Gonzalez-Amoretti J; Zhao M; York AK; Kuhn FR; Swift K; Martinez JD; Wang L; Jiang S; Aton SJ
    Nat Commun; 2021 Feb; 12(1):1200. PubMed ID: 33619256
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Is sleep essential for neural plasticity in humans, and how does it affect motor and cognitive recovery?
    Gorgoni M; D'Atri A; Lauri G; Rossini PM; Ferlazzo F; De Gennaro L
    Neural Plast; 2013; 2013():103949. PubMed ID: 23840970
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Travelling spindles create necessary conditions for spike-timing-dependent plasticity in humans.
    Dickey CW; Sargsyan A; Madsen JR; Eskandar EN; Cash SS; Halgren E
    Nat Commun; 2021 Feb; 12(1):1027. PubMed ID: 33589639
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hebbian plasticity in parallel synaptic pathways: A circuit mechanism for systems memory consolidation.
    Remme MWH; Bergmann U; Alevi D; Schreiber S; Sprekeler H; Kempter R
    PLoS Comput Biol; 2021 Dec; 17(12):e1009681. PubMed ID: 34874938
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Monosynaptic Hippocampal-Prefrontal Projections Contribute to Spatial Memory Consolidation in Mice.
    Binder S; Mölle M; Lippert M; Bruder R; Aksamaz S; Ohl F; Wiegert JS; Marshall L
    J Neurosci; 2019 Aug; 39(35):6978-6991. PubMed ID: 31285301
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of sleep and waking on the synaptic ultrastructure.
    Cirelli C; Tononi G
    Philos Trans R Soc Lond B Biol Sci; 2020 May; 375(1799):20190235. PubMed ID: 32248785
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of post-learning REM sleep deprivation on hippocampal plasticity-related genes and microRNA in mice.
    Karabulut S; Korkmaz Bayramov K; Bayramov R; Ozdemir F; Topaloglu T; Ergen E; Yazgan K; Taskiran AS; Golgeli A
    Behav Brain Res; 2019 Apr; 361():7-13. PubMed ID: 30594545
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research.
    Morris GP; Clark IA; Zinn R; Vissel B
    Neurobiol Learn Mem; 2013 Oct; 105():40-53. PubMed ID: 23850597
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Avoidance task training potentiates phasic pontine-wave density in the rat: A mechanism for sleep-dependent plasticity.
    Datta S
    J Neurosci; 2000 Nov; 20(22):8607-13. PubMed ID: 11069969
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Erasing synapses in sleep: is it time to be SHY?
    Frank MG
    Neural Plast; 2012; 2012():264378. PubMed ID: 22530156
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuromodulation of Spike-Timing-Dependent Plasticity: Past, Present, and Future.
    Brzosko Z; Mierau SB; Paulsen O
    Neuron; 2019 Aug; 103(4):563-581. PubMed ID: 31437453
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of prolonged waking-auditory stimulation on electroencephalogram synchronization and cortical coherence during subsequent slow-wave sleep.
    Cantero JL; Atienza M; Salas RM; Dominguez-Marin E
    J Neurosci; 2002 Jun; 22(11):4702-8. PubMed ID: 12040077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Brain plasticity and sleep: Implication for movement disorders.
    Caverzasio S; Amato N; Manconi M; Prosperetti C; Kaelin-Lang A; Hutchison WD; Galati S
    Neurosci Biobehav Rev; 2018 Mar; 86():21-35. PubMed ID: 29278685
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior.
    Ringli M; Huber R
    Prog Brain Res; 2011; 193():63-82. PubMed ID: 21854956
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration.
    Tononi G; Cirelli C
    Neuron; 2014 Jan; 81(1):12-34. PubMed ID: 24411729
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cortical plasticity: learning while you sleep?
    Sengpiel F
    Curr Biol; 2001 Aug; 11(16):R647-50. PubMed ID: 11525757
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cerebral Activation During Initial Motor Learning Forecasts Subsequent Sleep-Facilitated Memory Consolidation in Older Adults.
    King BR; Saucier P; Albouy G; Fogel SM; Rumpf JJ; Klann J; Buccino G; Binkofski F; Classen J; Karni A; Doyon J
    Cereb Cortex; 2017 Feb; 27(2):1588-1601. PubMed ID: 26802074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.