BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 32248972)

  • 1. Non-neural surface ectodermal rosette formation and F-actin dynamics drive mammalian neural tube closure.
    Zhou CJ; Ji Y; Reynolds K; McMahon M; Garland MA; Zhang S; Sun B; Gu R; Islam M; Liu Y; Zhao T; Hsu G; Iwasa J
    Biochem Biophys Res Commun; 2020 Jun; 526(3):647-653. PubMed ID: 32248972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues.
    De Castro SCP; Hirst CS; Savery D; Rolo A; Lickert H; Andersen B; Copp AJ; Greene NDE
    Dev Biol; 2018 Mar; 435(2):130-137. PubMed ID: 29397878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vangl2 disruption alters the biomechanics of late spinal neurulation leading to spina bifida in mouse embryos.
    Galea GL; Nychyk O; Mole MA; Moulding D; Savery D; Nikolopoulou E; Henderson DJ; Greene NDE; Copp AJ
    Dis Model Mech; 2018 Mar; 11(3):. PubMed ID: 29590636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation.
    Zhao T; Gan Q; Stokes A; Lassiter RN; Wang Y; Chan J; Han JX; Pleasure DE; Epstein JA; Zhou CJ
    Development; 2014 Jan; 141(1):148-57. PubMed ID: 24284205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of Grhl3 is correlated with altered cellular protrusions in the non-neural ectoderm during neural tube closure.
    Jaffe E; Niswander L
    Dev Dyn; 2021 May; 250(5):732-744. PubMed ID: 33378081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of retinoic acid signaling impairs cranial and spinal neural tube closure in mice lacking the Grainyhead-like 3 transcription factor.
    Deng Z; Carpinelli MR; Butt T; Magor GW; Perkins AC; Jane SM
    Biochem Biophys Res Commun; 2022 Dec; 635():244-251. PubMed ID: 36283337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased expression of Grainyhead-like-3 rescues spina bifida in a folate-resistant mouse model.
    Gustavsson P; Greene ND; Lad D; Pauws E; de Castro SC; Stanier P; Copp AJ
    Hum Mol Genet; 2007 Nov; 16(21):2640-6. PubMed ID: 17720888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valproic acid disrupts the biomechanics of late spinal neural tube closure in mouse embryos.
    Hughes A; Greene NDE; Copp AJ; Galea GL
    Mech Dev; 2018 Feb; 149():20-26. PubMed ID: 29225143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate Specification of Neural Plate Border by Canonical Wnt Signaling and Grhl3 is Crucial for Neural Tube Closure.
    Kimura-Yoshida C; Mochida K; Ellwanger K; Niehrs C; Matsuo I
    EBioMedicine; 2015 Jun; 2(6):513-27. PubMed ID: 26288816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The TFAP2A-IRF6-GRHL3 genetic pathway is conserved in neurulation.
    Kousa YA; Zhu H; Fakhouri WD; Lei Y; Kinoshita A; Roushangar RR; Patel NK; Agopian AJ; Yang W; Leslie EJ; Busch TD; Mansour TA; Li X; Smith AL; Li EB; Sharma DB; Williams TJ; Chai Y; Amendt BA; Liao EC; Mitchell LE; Bassuk AG; Gregory S; Ashley-Koch A; Shaw GM; Finnell RH; Schutte BC
    Hum Mol Genet; 2019 May; 28(10):1726-1737. PubMed ID: 30689861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the vertebrate central nervous system: formation of the neural tube.
    Greene ND; Copp AJ
    Prenat Diagn; 2009 Apr; 29(4):303-11. PubMed ID: 19206138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical coupling facilitates spinal neural tube closure in mouse embryos.
    Galea GL; Cho YJ; Galea G; Molè MA; Rolo A; Savery D; Moulding D; Culshaw LH; Nikolopoulou E; Greene NDE; Copp AJ
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):E5177-E5186. PubMed ID: 28607062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional neural tube closure defined by the Grainy head-like transcription factors.
    Rifat Y; Parekh V; Wilanowski T; Hislop NR; Auden A; Ting SB; Cunningham JM; Jane SM
    Dev Biol; 2010 Sep; 345(2):237-45. PubMed ID: 20654612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure.
    Ray HJ; Niswander LA
    Development; 2016 Apr; 143(7):1192-204. PubMed ID: 26903501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hinge point emergence in mammalian spinal neurulation.
    de Goederen V; Vetter R; McDole K; Iber D
    Proc Natl Acad Sci U S A; 2022 May; 119(20):e2117075119. PubMed ID: 35561223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of cell protrusions by small GTPases during fusion of the neural folds.
    Rolo A; Savery D; Escuin S; de Castro SC; Armer HE; Munro PM; Molè MA; Greene ND; Copp AJ
    Elife; 2016 Apr; 5():e13273. PubMed ID: 27114066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grainyhead genes and mammalian neural tube closure.
    Gustavsson P; Copp AJ; Greene ND
    Birth Defects Res A Clin Mol Teratol; 2008 Oct; 82(10):728-35. PubMed ID: 18683893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural tube closure: cellular, molecular and biomechanical mechanisms.
    Nikolopoulou E; Galea GL; Rolo A; Greene ND; Copp AJ
    Development; 2017 Feb; 144(4):552-566. PubMed ID: 28196803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic variants in GRHL3 and risk for neural tube defects: A case-control and case-parent triad/control study.
    Yang W; Xiao Y; Tian T; Jin L; Wang L; Ren A
    Birth Defects Res; 2019 Nov; 111(19):1468-1478. PubMed ID: 31332962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shared molecular networks in orofacial and neural tube development.
    Kousa YA; Mansour TA; Seada H; Matoo S; Schutte BC
    Birth Defects Res; 2017 Jan; 109(2):169-179. PubMed ID: 27933721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.