BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32249240)

  • 1. Multiple roles of hypoxia in bovine corpus luteum.
    Nishimura R; Okuda K
    J Reprod Dev; 2020 Aug; 66(4):307-310. PubMed ID: 32249240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple roles of hypoxia in ovarian function: roles of hypoxia-inducible factor-related and -unrelated signals during the luteal phase.
    Nishimura R; Okuda K
    Reprod Fertil Dev; 2015 May; ():. PubMed ID: 25940685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia increases glucose transporter 1 expression in bovine corpus luteum at the early luteal stage.
    Nishimura R; Hasegawa H; Yamashita M; Ito N; Okamoto Y; Takeuchi T; Kubo T; Iga K; Kimura K; Hishinuma M; Okuda K
    J Vet Med Sci; 2017 Nov; 79(11):1878-1883. PubMed ID: 29046497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia is important for establishing vascularization during corpus luteum formation in cattle.
    Nishimura R; Okuda K
    J Reprod Dev; 2010 Feb; 56(1):110-6. PubMed ID: 19881217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of vascular endothelial growth factor in the primate ovary up-regulates hypoxia-inducible factor-1alpha in the follicle and corpus luteum.
    Duncan WC; van den Driesche S; Fraser HM
    Endocrinology; 2008 Jul; 149(7):3313-20. PubMed ID: 18388198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of HIF-1a/VEGF signaling pathway on plasma progesterone and ovarian prostaglandin F₂a secretion during luteal development of pseudopregnant rats.
    Pan XY; Zhang ZH; Wu LX; Wang ZC
    Genet Mol Res; 2015 Aug; 14(3):8796-809. PubMed ID: 26345811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Contribution of Tissue Hypoxia to Corpus Luteum Formation].
    Liu YZ; Zhang HZ; Wu QJ; Wang CZ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2019 Dec; 41(6):837-841. PubMed ID: 31907137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose transporter 1 expression accompanies hypoxia sensing in the cyclic canine corpus luteum.
    Papa Pde C; Sousa LM; Silva Rdos S; de Fátima LA; da Fonseca VU; do Amaral VC; Hoffmann B; Alves-Wagner AB; Machado UF; Kowalewski MP
    Reproduction; 2014 Jan; 147(1):81-9. PubMed ID: 24140705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of hypoxia-induced genes in ovarian angiogenesis.
    Meidan R; Klipper E; Zalman Y; Yalu R
    Reprod Fertil Dev; 2013; 25(2):343-50. PubMed ID: 22950963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of prostaglandin F2 alpha on local luteotropic and angiogenic factors during induced functional luteolysis in the bovine corpus luteum.
    Berisha B; Meyer HH; Schams D
    Biol Reprod; 2010 May; 82(5):940-7. PubMed ID: 20056670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of endothelin-2 expression by luteinizing hormone and hypoxia: possible role in bovine corpus luteum formation.
    Klipper E; Levit A; Mastich Y; Berisha B; Schams D; Meidan R
    Endocrinology; 2010 Apr; 151(4):1914-22. PubMed ID: 20176726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter- and intra-cellular mechanisms of prostaglandin F2alpha action during corpus luteum regression in cattle.
    Skarzynski DJ; Okuda K
    Soc Reprod Fertil Suppl; 2010; 67():305-24. PubMed ID: 21755681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BNIP3 expression in bovine follicle and corpus luteum.
    Nishimura R; Okuda K; Gunji Y; Khalid AM; Yamano Y; Yamashita Y; Hishinuma M
    J Vet Med Sci; 2018 Mar; 80(2):368-374. PubMed ID: 29269703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) expression during induced luteolysis in the bovine corpus luteum.
    Neuvians TP; Berisha B; Schams D
    Mol Reprod Dev; 2004 Apr; 67(4):389-95. PubMed ID: 14991729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of GPR1 signaling in mice corpus luteum.
    Yang YL; Ren LR; Sun LF; Huang C; Xiao TX; Wang BB; Chen J; Zabel BA; Ren P; Zhang JV
    J Endocrinol; 2016 Jul; 230(1):55-65. PubMed ID: 27149986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular composition, apoptosis, and expression of angiogenic factors in the corpus luteum during prostaglandin F2alpha-induced regression in sheep.
    Vonnahme KA; Redmer DA; Borowczyk E; Bilski JJ; Luther JS; Johnson ML; Reynolds LP; Grazul-Bilska AT
    Reproduction; 2006 Jun; 131(6):1115-26. PubMed ID: 16735551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular dynamics in relation to immunolocalisation of VEGF-A, VEGFR-2 and Ang-2 in the bovine corpus luteum.
    Hünigen H; Bisplinghoff P; Plendl J; Bahramsoltani M
    Acta Histochem; 2008; 110(6):462-72. PubMed ID: 18541291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and tissue concentration of vascular endothelial growth factor, its receptors, and localization in the bovine corpus luteum during estrous cycle and pregnancy.
    Berisha B; Schams D; Kosmann M; Amselgruber W; Einspanier R
    Biol Reprod; 2000 Oct; 63(4):1106-14. PubMed ID: 10993833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and localization of hypoxia inducible factor-1alpha mRNA in the porcine ovary.
    Boonyaprakob U; Gadsby JE; Hedgpeth V; Routh PA; Almond GW
    Can J Vet Res; 2005 Jul; 69(3):215-22. PubMed ID: 16187552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basic fibroblast growth factor induces proliferation and collagen production by fibroblasts derived from the bovine corpus luteum†.
    Monaco CF; Plewes MR; Przygrodzka E; George JW; Qiu F; Xiao P; Wood JR; Cupp AS; Davis JS
    Biol Reprod; 2023 Sep; 109(3):367-380. PubMed ID: 37283496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.