These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 32249280)

  • 1. Microfluidic device to study flow-free chemotaxis of swimming cells.
    Garcia-Seyda N; Aoun L; Tishkova V; Seveau V; Biarnes-Pelicot M; Bajénoff M; Valignat MP; Theodoly O
    Lab Chip; 2020 May; 20(9):1639-1647. PubMed ID: 32249280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T cell chemotaxis in a simple microfluidic device.
    Lin F; Butcher EC
    Lab Chip; 2006 Nov; 6(11):1462-9. PubMed ID: 17066171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Static Microfluidic Device for Investigating the Chemotaxis Response to Stable, Non-linear Gradients.
    Sule N; Penarete-Acosta D; Englert DL; Jayaraman A
    Methods Mol Biol; 2018; 1729():47-59. PubMed ID: 29429081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic devices for neutrophil chemotaxis studies.
    Zhao W; Zhao H; Li M; Huang C
    J Transl Med; 2020 Apr; 18(1):168. PubMed ID: 32293474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Gradients on a Microfluidic Device: Toward a High-Throughput Investigation of Spermatozoa Chemotaxis.
    Zhang Y; Xiao RR; Yin T; Zou W; Tang Y; Ding J; Yang J
    PLoS One; 2015; 10(11):e0142555. PubMed ID: 26555941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic device for studying chemotaxis mechanism of bacterial cancer targeting.
    Song J; Zhang Y; Zhang C; Du X; Guo Z; Kuang Y; Wang Y; Wu P; Zou K; Zou L; Lv J; Wang Q
    Sci Rep; 2018 Apr; 8(1):6394. PubMed ID: 29686328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple microfluidic device for studying chemotaxis in response to dual gradients.
    Moussavi-Harami SF; Pezzi HM; Huttenlocher A; Beebe DJ
    Biomed Microdevices; 2015; 17(3):9955. PubMed ID: 25893484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control.
    Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F
    Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients.
    Ahmed T; Shimizu TS; Stocker R
    Nano Lett; 2010 Sep; 10(9):3379-85. PubMed ID: 20669946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-Free Microfluidic Device for Quantifying Chemotaxis in Spermatozoa.
    Berendsen JTW; Kruit SA; Atak N; Willink E; Segerink LI
    Anal Chem; 2020 Feb; 92(4):3302-3306. PubMed ID: 31994387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The microfluidic lighthouse: an omnidirectional gradient generator.
    Nakajima A; Ishida M; Fujimori T; Wakamoto Y; Sawai S
    Lab Chip; 2016 Nov; 16(22):4382-4394. PubMed ID: 27735954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid enumeration of CD4 + T lymphocytes using an integrated microfluidic system based on Chemiluminescence image detection at point-of-care testing.
    Qiu X; Yang S; Wu D; Wang D; Qiao S; Ge S; Xia N; Yu D; Qian S
    Biomed Microdevices; 2018 Feb; 20(1):15. PubMed ID: 29423764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recapitulation of in vivo-like neutrophil transendothelial migration using a microfluidic platform.
    Wu X; Newbold MA; Haynes CL
    Analyst; 2015 Aug; 140(15):5055-64. PubMed ID: 26087389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A complementary method to CD4 counting: measurement of CD4+/CD8+ T lymphocyte ratio in a tandem affinity microfluidic system.
    Li W; Gao Y; Pappas D
    Biomed Microdevices; 2015 Dec; 17(6):113. PubMed ID: 26559198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Chemotaxis Assay to Examine Microbial Behavior in Aquatic Ecosystems.
    Clerc EE; Raina JB; Lambert BS; Seymour J; Stocker R
    J Vis Exp; 2020 May; (159):. PubMed ID: 32449732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrin associated proteins differentially regulate neutrophil polarity and directed migration in 2D and 3D.
    Yamahashi Y; Cavnar PJ; Hind LE; Berthier E; Bennin DA; Beebe D; Huttenlocher A
    Biomed Microdevices; 2015 Oct; 17(5):100. PubMed ID: 26354879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tuneable microfluidic system for long duration chemotaxis experiments in a 3D collagen matrix.
    Aizel K; Clark AG; Simon A; Geraldo S; Funfak A; Vargas P; Bibette J; Vignjevic DM; Bremond N
    Lab Chip; 2017 Nov; 17(22):3851-3861. PubMed ID: 29022983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis.
    Si G; Yang W; Bi S; Luo C; Ouyang Q
    Lab Chip; 2012 Apr; 12(7):1389-94. PubMed ID: 22361931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-Low Dose Lipopolysaccharide Dysregulates Neutrophil Migratory Decision-Making.
    Boribong BP; Lenzi MJ; Li L; Jones CN
    Front Immunol; 2019; 10():359. PubMed ID: 30915068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutrophil migration under spatially-varying chemoattractant gradient profiles.
    Halilovic I; Wu J; Alexander M; Lin F
    Biomed Microdevices; 2015; 17(3):9963. PubMed ID: 25998723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.