These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 3224930)

  • 1. [Improved objective visual assessment with visual evoked cortical potentials by rapid pattern stimuli sequences of different spatial frequency].
    Hajek A; Zrenner E
    Fortschr Ophthalmol; 1988; 85(5):550-4. PubMed ID: 3224930
    [No Abstract]   [Full Text] [Related]  

  • 2. [Use of the scanning laser ophthalmoscope for recording pattern electroretinography and visual evoked cortical potentials].
    Teping C; Wolf S; Schippers V; Plesch A; Silny J
    Klin Monbl Augenheilkd; 1989 Sep; 195(3):203-6. PubMed ID: 2811185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial frequency-specific potentiation of human visual-evoked potentials.
    McNair NA; Clapp WC; Hamm JP; Teyler TJ; Corballis MC; Kirk IJ
    Neuroreport; 2006 May; 17(7):739-41. PubMed ID: 16641679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of evoked potentials to study visual perception. II. Perception of spatially structured stimuli.
    Novikova LA; Zislina NN; Tolstova VA; Fil'chikova LI
    Hum Physiol; 1979; 5(3):379-86. PubMed ID: 548451
    [No Abstract]   [Full Text] [Related]  

  • 5. [Luminance and color contrast evoked pattern electroretinograms and visual evoked potentials].
    Korth M; Rix R; Horn F
    Fortschr Ophthalmol; 1988; 85(5):534-40. PubMed ID: 3224928
    [No Abstract]   [Full Text] [Related]  

  • 6. Activity in the visual cortex is modulated by top-down attention locked to reaction time.
    Moradi F; Hipp C; Koch C
    J Cogn Neurosci; 2007 Feb; 19(2):331-40. PubMed ID: 17280520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Clinical significance of objective vision assessment using visually evoked cortical potentials induced by rapid pattern sequences of different spatial frequency].
    Heine S; Rüther K; Isensee J; Zrenner E
    Klin Monbl Augenheilkd; 1999 Sep; 215(3):175-81. PubMed ID: 10528283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal frequency tuning of pattern-reversal retinal potentials.
    Trick GL; Wintermeyer DH
    Invest Ophthalmol Vis Sci; 1982 Dec; 23(6):774-9. PubMed ID: 7141818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
    Whittingstall K; Wilson D; Schmidt M; Stroink G
    Brain Topogr; 2008 Dec; 21(2):86-92. PubMed ID: 18841455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Spatial frequency tuning characteristics of cat primary visual cortex at different topological locations by optical imaging].
    Yu HB; Shou TD
    Sheng Li Xue Bao; 2000 Oct; 52(5):411-5. PubMed ID: 11941397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry.
    Fawcett IP; Barnes GR; Hillebrand A; Singh KD
    Neuroimage; 2004 Apr; 21(4):1542-53. PubMed ID: 15050578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Topography of the movement visual evoked potential in the human].
    Göpfert E; Schlykowa L; Müller R
    EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb; 1988 Mar; 19(1):14-20. PubMed ID: 3131104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of parameters of spatio-structural stimuli on evoked potentials of the visual and posterior associative regions of the cortex in man].
    Tolstova VA; Zislina NN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1982; 32(6):1124-31. PubMed ID: 7164577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A power-spectrum based statistical analysis of character-stimulated visual evoked potentials].
    Nakamura A; Ito S; Utsunomiya T; Goto H
    Iyodenshi To Seitai Kogaku; 1986 Apr; 24(2):108-14. PubMed ID: 3735760
    [No Abstract]   [Full Text] [Related]  

  • 15. [Pattern evoked retinal and cortical potentials in tapetoretinal dystrophy].
    Raile A; Lorenz R; Heider W
    Fortschr Ophthalmol; 1988; 85(6):744-9. PubMed ID: 3220396
    [No Abstract]   [Full Text] [Related]  

  • 16. Feedforward and recurrent processing in scene segmentation: electroencephalography and functional magnetic resonance imaging.
    Scholte HS; Jolij J; Fahrenfort JJ; Lamme VA
    J Cogn Neurosci; 2008 Nov; 20(11):2097-109. PubMed ID: 18416684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Visual evoked potentials in rabbit's visual cortex reflect variations in orientation and intensity of lines].
    Polianskiĭ VB; Alymkulov DE; Sokolov EN; Radzievskaia MG; Ruderman GL
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(6):688-99. PubMed ID: 19178071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial choices of macaque monkeys based on the visual representation of the response space: rotation of the stimuli.
    Nedvidek J; Nekovarova T; Bures J
    Behav Brain Res; 2008 Nov; 193(2):204-8. PubMed ID: 18588916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Visual pathway diagnosis using the simultaneous registration of retinal and cortical pattern potentials].
    Bach M; Waltenspiel S; Bühler B; Röver J
    Fortschr Ophthalmol; 1985; 82(4):398-401. PubMed ID: 4054795
    [No Abstract]   [Full Text] [Related]  

  • 20. Developmental changes in human infant visual-evoked potentials to patterned stimuli recorded at different scalp locations.
    Hoffmann RF
    Child Dev; 1978 Mar; 49(1):110-8. PubMed ID: 657887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.