These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32249339)

  • 1. StartReact increases the probability of muscle activity and distance in severe/moderate stroke survivors during two-dimensional reaching task.
    Rahimi M; Honeycutt CF
    Exp Brain Res; 2020 May; 238(5):1219-1227. PubMed ID: 32249339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Startle evokes nearly identical movements in multi-jointed, two-dimensional reaching tasks.
    Ossanna MR; Zong X; Ravichandran VJ; Honeycutt CF
    Exp Brain Res; 2019 Jan; 237(1):71-80. PubMed ID: 30306245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planning of ballistic movement following stroke: insights from the startle reflex.
    Honeycutt CF; Perreault EJ
    PLoS One; 2012; 7(8):e43097. PubMed ID: 22952634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deficits in startle-evoked arm movements increase with impairment following stroke.
    Honeycutt CF; Perreault EJ
    Clin Neurophysiol; 2014 Aug; 125(8):1682-8. PubMed ID: 24411525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does exposure to startle impact voluntary reaching movements in individuals with severe-to-moderate stroke?
    Rahimi M; Swann Z; Honeycutt CF
    Exp Brain Res; 2021 Mar; 239(3):745-753. PubMed ID: 33392695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Startling acoustic stimuli can evoke fast hand extension movements in stroke survivors.
    Honeycutt CF; Tresch UA; Perreault EJ
    Clin Neurophysiol; 2015 Jan; 126(1):160-4. PubMed ID: 25002367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of task complexity on movement planning and release after stroke: insights from startReact.
    Lee H; Honeycutt C; Perreault E
    Exp Brain Res; 2022 Jun; 240(6):1765-1774. PubMed ID: 35445354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of transcranial direct current stimulation (tDCS) on posture, movement planning, and execution during standing voluntary reach following stroke.
    Yang CL; Gad A; Creath RA; Magder L; Rogers MW; Waller SM
    J Neuroeng Rehabil; 2021 Jan; 18(1):5. PubMed ID: 33413441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Relationship Between Enhanced Reticulospinal Outflow and Upper Limb Function in Chronic Stroke Patients.
    Choudhury S; Shobhana A; Singh R; Sen D; Anand SS; Shubham S; Baker MR; Kumar H; Baker SN
    Neurorehabil Neural Repair; 2019 May; 33(5):375-383. PubMed ID: 30913964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic review with meta-analysis of the StartReact effect on motor responses in stroke survivors and healthy individuals.
    DeLuca M; Low D; Kumari V; Parton A; Davis J; Mohagheghi AA
    J Neurophysiol; 2022 Apr; 127(4):938-945. PubMed ID: 35235444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When reflex reactions oppose voluntary commands: The StartReact effect on eye opening.
    Valls-Solé J; Castellote JM; Kofler M; Serranová T; Versace V; Campostrini S; Campolo M
    Psychophysiology; 2021 Mar; 58(3):e13752. PubMed ID: 33347635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the dual-task costs of walking: a StartReact study.
    Nonnekes J; Dibilio V; Barthel C; Solis-Escalante T; Bloem BR; Weerdesteyn V
    Exp Brain Res; 2020 May; 238(5):1359-1364. PubMed ID: 32355996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. StartReact effects are dependent on engagement of startle reflex circuits: support for a subcortically mediated initiation pathway.
    Smith V; Maslovat D; Carlsen AN
    J Neurophysiol; 2019 Dec; 122(6):2541-2547. PubMed ID: 31642402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial.
    Barker RN; Brauer SG; Carson RG
    Stroke; 2008 Jun; 39(6):1800-7. PubMed ID: 18403742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of arm weight support on neuromuscular activation during reaching in chronic stroke patients.
    Runnalls KD; Ortega-Auriol P; McMorland AJC; Anson G; Byblow WD
    Exp Brain Res; 2019 Dec; 237(12):3391-3408. PubMed ID: 31728596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionation of muscle activity in rapid responses to startling cues.
    Dean LR; Baker SN
    J Neurophysiol; 2017 Apr; 117(4):1713-1719. PubMed ID: 28003416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinematic motion analysis and muscle activation patterns of continuous reaching in survivors of stroke.
    Massie CL; Malcolm MP; Greene DP; Browning RC
    J Mot Behav; 2012; 44(3):213-22. PubMed ID: 22647246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myoelectric Computer Interface Training for Reducing Co-Activation and Enhancing Arm Movement in Chronic Stroke Survivors: A Randomized Trial.
    Mugler EM; Tomic G; Singh A; Hameed S; Lindberg EW; Gaide J; Alqadi M; Robinson E; Dalzotto K; Limoli C; Jacobson T; Lee J; Slutzky MW
    Neurorehabil Neural Repair; 2019 Apr; 33(4):284-295. PubMed ID: 30888251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired motor preparation and execution during standing reach in people with chronic stroke.
    McCombe Waller S; Yang CL; Magder L; Yungher D; Gray V; Rogers MW
    Neurosci Lett; 2016 Sep; 630():38-44. PubMed ID: 27436481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired posture, movement preparation, and execution during both paretic and nonparetic reaching following stroke.
    Yang CL; Creath RA; Magder L; Rogers MW; McCombe Waller S
    J Neurophysiol; 2019 Apr; 121(4):1465-1477. PubMed ID: 30785824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.