These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32249530)

  • 1. Analyzing Energy Materials by Cryogenic Electron Microscopy.
    Ren XC; Zhang XQ; Xu R; Huang JQ; Zhang Q
    Adv Mater; 2020 Jun; 32(24):e1908293. PubMed ID: 32249530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryogenic Electron Microscopy for Energy Materials.
    Zhang Z; Cui Y; Vila R; Li Y; Zhang W; Zhou W; Chiu W; Cui Y
    Acc Chem Res; 2021 Sep; 54(18):3505-3517. PubMed ID: 34278783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing the Sensitive Lithium with Atomic Precision: Cryogenic Electron Microscopy for Batteries.
    Liu Y; Ju Z; Zhang B; Wang Y; Nai J; Liu T; Tao X
    Acc Chem Res; 2021 May; 54(9):2088-2099. PubMed ID: 33856759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-EM for battery materials and interfaces: Workflow, achievements, and perspectives.
    Weng S; Li Y; Wang X
    iScience; 2021 Dec; 24(12):103402. PubMed ID: 34849466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the cryogenic electron microscopy toolbox to reveal diverse classes of battery solid electrolyte interphase.
    Zhang E; Mecklenburg M; Yuan X; Wang C; Liu B; Li Y
    iScience; 2022 Dec; 25(12):105689. PubMed ID: 36582482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding Ion-Beam Damage to Air-Sensitive Lithium Metal With Cryogenic Electron and Ion Microscopy.
    Koh H; Detsi E; Stach EA
    Microsc Microanal; 2023 Jul; 29(4):1350-1356. PubMed ID: 37488829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries.
    Zachman MJ; Tu Z; Choudhury S; Archer LA; Kourkoutis LF
    Nature; 2018 Aug; 560(7718):345-349. PubMed ID: 30111789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical and Structural Analysis in All-Solid-State Lithium Batteries by Analytical Electron Microscopy: Progress and Perspectives.
    Zhang C; Feng Y; Han Z; Gao S; Wang M; Wang P
    Adv Mater; 2020 Jul; 32(27):e1903747. PubMed ID: 31660670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM.
    Wang X; Zhang M; Alvarado J; Wang S; Sina M; Lu B; Bouwer J; Xu W; Xiao J; Zhang JG; Liu J; Meng YS
    Nano Lett; 2017 Dec; 17(12):7606-7612. PubMed ID: 29090936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct Nanoscale Interphases and Morphology of Lithium Metal Electrodes Operating at Low Temperatures.
    Thenuwara AC; Shetty PP; McDowell MT
    Nano Lett; 2019 Dec; 19(12):8664-8672. PubMed ID: 31671260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operando Freezing Cryogenic Electron Microscopy of Active Battery Materials.
    Dutta NS; Carroll GM; Neale NR; Han SD; Al-Jassim M; Jungjohann K
    Microsc Microanal; 2024 Nov; 30(5):844-852. PubMed ID: 39373722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryogenic Electron Microscopy on Strongly Correlated Quantum Materials.
    Zhu Y
    Acc Chem Res; 2021 Sep; 54(18):3518-3528. PubMed ID: 34473926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes.
    Chen X; Zhang Q
    Acc Chem Res; 2020 Sep; 53(9):1992-2002. PubMed ID: 32883067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designer Anions for Better Rechargeable Lithium Batteries and Beyond.
    Song Z; Wang X; Feng W; Armand M; Zhou Z; Zhang H
    Adv Mater; 2024 Aug; 36(33):e2310245. PubMed ID: 38839065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halide-Based Materials and Chemistry for Rechargeable Batteries.
    Zhao X; Zhao-Karger Z; Fichtner M; Shen X
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):5902-5949. PubMed ID: 31359549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Characterization of Liquid-Solid Interfaces by Coupling Cryo-Focused Ion Beam Milling with Scanning Electron Microscopy and Spectroscopy.
    Moon T; Colletta M; Kourkoutis LF
    J Vis Exp; 2022 Jul; (185):. PubMed ID: 35913136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualizing the Interfacial Chemistry in Multivalent Metal Anodes by Transmission Electron Microscopy.
    Lin H; Yu J; Chen F; Li R; Xia BY; Xu ZL
    Small Methods; 2023 Oct; 7(10):e2300561. PubMed ID: 37415543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes.
    Wei S; Choudhury S; Tu Z; Zhang K; Archer LA
    Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.
    Peng HJ; Huang JQ; Zhang Q
    Chem Soc Rev; 2017 Aug; 46(17):5237-5288. PubMed ID: 28783188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.