These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 32249561)

  • 1. Stretchable and Skin-Conformable Conductors Based on Polyurethane/Laser-Induced Graphene.
    Dallinger A; Keller K; Fitzek H; Greco F
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19855-19865. PubMed ID: 32249561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-Induced Graphene Stretchable Strain Sensor with Vertical and Parallel Patterns.
    Yen YH; Hsu CS; Lei ZY; Wang HJ; Su CY; Dai CL; Tsai YC
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable Sensors and Electro-Thermal Actuators with Self-Sensing Capability Using the Laser-Induced Graphene Technology.
    Wang H; Zhao Z; Liu P; Pan Y; Guo X
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41283-41295. PubMed ID: 36037172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Patterning of Highly Stretchable and Electrically Conductive Liquid Metal Conductors by Direct-Write Super-Hydrophilic Laser-Induced Graphene and Electroless Copper Plating.
    Wang Z; Wu Y; Zhu B; Chen Q; Zhang Y; Xu Z; Sun D; Lin L; Wu D
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4713-4723. PubMed ID: 36623166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water Peel-Off Transfer of Electronically Enhanced, Paper-Based Laser-Induced Graphene for Wearable Electronics.
    Pinheiro T; Correia R; Morais M; Coelho J; Fortunato E; Sales MGF; Marques AC; Martins R
    ACS Nano; 2022 Dec; 16(12):20633-20646. PubMed ID: 36383513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust, stretchable bioelectronic interfaces for cardiac pacing enabled by interfacial transfer of laser-induced graphene via water-response, nonswellable PVA gels.
    Zhao L; Chang Z; Guo B; Lu Y; Lu X; Ren Q; Lv A; Nie J; Ji D; Rotenberg MY; Wang B; Zhang Y; Fang Y
    Biosens Bioelectron; 2024 Oct; 261():116453. PubMed ID: 38850739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Skin-Conformal Laser-Induced Graphene-Based Human Motion Monitoring Sensor.
    Jeong SY; Lee JU; Hong SM; Lee CW; Hwang SH; Cho SC; Shin BS
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33917897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes.
    Singh SP; Li Y; Zhang J; Tour JM; Arnusch CJ
    ACS Nano; 2018 Jan; 12(1):289-297. PubMed ID: 29241007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional Motion Sensing Enabled by Laser-Induced Graphene.
    Deng B; Wang Z; Liu W; Hu B
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sweat analysis with a wearable sensing platform based on laser-induced graphene.
    Vivaldi F; Dallinger A; Poma N; Bonini A; Biagini D; Salvo P; Borghi F; Tavanti A; Greco F; Di Francesco F
    APL Bioeng; 2022 Sep; 6(3):036104. PubMed ID: 36147196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-induced graphene for bioelectronics and soft actuators.
    Xu Y; Fei Q; Page M; Zhao G; Ling Y; Chen D; Yan Z
    Nano Res; 2021; 14(9):3033-3050. PubMed ID: 33841746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-Induced Graphene-Based Sensors in Health Monitoring: Progress, Sensing Mechanisms, and Applications.
    Li Z; Huang L; Cheng L; Guo W; Ye R
    Small Methods; 2024 Apr; ():e2400118. PubMed ID: 38597770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PDMS/Polyimide Composite as an Elastomeric Substrate for Multifunctional Laser-Induced Graphene Electrodes.
    Parmeggiani M; Zaccagnini P; Stassi S; Fontana M; Bianco S; Nicosia C; Pirri CF; Lamberti A
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33221-33230. PubMed ID: 31368684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ fabrication of titanium suboxide-laser induced graphene composites: Removal of organic pollutants and MS2 Bacteriophage.
    Kumar A; Barbhuiya NH; Nair AM; Jashrapuria K; Dixit N; Singh SP
    Chemosphere; 2023 Sep; 335():138988. PubMed ID: 37247678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Smart Components by 3D Printing and Laser-Scribing Technologies.
    Yang W; Zhao W; Li Q; Li H; Wang Y; Li Y; Wang G
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3928-3935. PubMed ID: 31888330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Sensing and Warning Multifunctional Devices Based on the Combined Mechanical and Thermal Effect of Porous Graphene.
    Huang Y; Tao LQ; Yu J; Wang Z; Zhu C; Chen X
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53049-53057. PubMed ID: 33170628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-induced graphene (LIG)-driven medical sensors for health monitoring and diseases diagnosis.
    Liu J; Ji H; Lv X; Zeng C; Li H; Li F; Qu B; Cui F; Zhou Q
    Mikrochim Acta; 2022 Jan; 189(2):54. PubMed ID: 35001163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laminated Laser-Induced Graphene Composites.
    Li JT; Stanford MG; Chen W; Presutti SE; Tour JM
    ACS Nano; 2020 Jul; 14(7):7911-7919. PubMed ID: 32441916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-Induced Graphene-PVA Composites as Robust Electrically Conductive Water Treatment Membranes.
    Thakur AK; Singh SP; Kleinberg MN; Gupta A; Arnusch CJ
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10914-10921. PubMed ID: 30794741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Laser-Induced Graphene-Based Materials for Energy Storage and Conversion.
    Jo SG; Ramkumar R; Lee JW
    ChemSusChem; 2024 Mar; 17(5):e202301146. PubMed ID: 38057133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.