These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32249564)

  • 1. Chiral Interaction Is a Decisive Factor To Replace d-DNA with l-DNA Aptamers.
    Feng XN; Cui YX; Zhang J; Tang AN; Mao HB; Kong DM
    Anal Chem; 2020 May; 92(9):6470-6477. PubMed ID: 32249564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Biostable L-aptamers against Achiral Targets by Chiral Inversion of Existing D-aptamers.
    Chen H; Xie S; Liang H; Wu C; Cui L; Huan SY; Zhang X
    Talanta; 2017 Mar; 164():662-667. PubMed ID: 28107987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biostable L-DNA-Templated Aptamer-Silver Nanoclusters for Cell-Type-Specific Imaging at Physiological Temperature.
    Han GM; Jia ZZ; Zhu YJ; Jiao JJ; Kong DM; Feng XZ
    Anal Chem; 2016 Nov; 88(22):10800-10804. PubMed ID: 27797508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and rapid approach for measurement of dissociation constants of DNA aptamers against proteins and small molecules via automated microchip electrophoresis.
    Hu J; Easley CJ
    Analyst; 2011 Sep; 136(17):3461-8. PubMed ID: 21293790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target recycling amplification for label-free and sensitive colorimetric detection of adenosine triphosphate based on un-modified aptamers and DNAzymes.
    Gong X; Li J; Zhou W; Xiang Y; Yuan R; Chai Y
    Anal Chim Acta; 2014 May; 828():80-4. PubMed ID: 24845818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-quadruplex DNA aptamers and their ligands: structure, function and application.
    Tucker WO; Shum KT; Tanner JA
    Curr Pharm Des; 2012; 18(14):2014-26. PubMed ID: 22376117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro selection and characterization of DNA aptamers recognizing chloramphenicol.
    Mehta J; Van Dorst B; Rouah-Martin E; Herrebout W; Scippo ML; Blust R; Robbens J
    J Biotechnol; 2011 Oct; 155(4):361-9. PubMed ID: 21839787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-assembled chiral-aptasensor for ATP activity detection.
    Fu P; Sun M; Xu L; Wu X; Liu L; Kuang H; Song S; Xu C
    Nanoscale; 2016 Aug; 8(32):15008-15. PubMed ID: 27468834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free fluorescent assays based on aptamer-target recognition.
    Tan Y; Zhang X; Xie Y; Zhao R; Tan C; Jiang Y
    Analyst; 2012 May; 137(10):2309-12. PubMed ID: 22451893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multifunctional label-free electrochemical impedance biosensor for Hg(2+), adenosine triphosphate and thrombin.
    Chen L; Chen ZN
    Talanta; 2015 Jan; 132():664-8. PubMed ID: 25476361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Aptamers with Selectively Enhanced Biostability in the Tumor Microenvironment.
    Xie S; Wang Z; Fu T; Zheng L; Wu H; He L; Huang H; Yang C; Wang R; Qian X; Qiu L; Tan W
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202201220. PubMed ID: 35536294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease III-assisted target recycling.
    Hou T; Li W; Zhang L; Li F
    Analyst; 2015 Aug; 140(16):5748-53. PubMed ID: 26165638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A G-quadruplex-based Label-free Fluorometric Aptasensor for Adenosine Triphosphate Detection.
    Li LJ; Tian X; Kong XJ; Chu X
    Anal Sci; 2015; 31(6):469-73. PubMed ID: 26063007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical aptamer sensor for small molecule assays.
    Liu X; Li W; Xu X; Zhou J; Nie Z
    Methods Mol Biol; 2012; 800():119-32. PubMed ID: 21964786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence Resonance Energy Transfer-Based DNA Nanoprism with a Split Aptamer for Adenosine Triphosphate Sensing in Living Cells.
    Zheng X; Peng R; Jiang X; Wang Y; Xu S; Ke G; Fu T; Liu Q; Huan S; Zhang X
    Anal Chem; 2017 Oct; 89(20):10941-10947. PubMed ID: 28931278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Fitting" makes "sensing" simple: label-free detection strategies based on nucleic acid aptamers.
    Du Y; Li B; Wang E
    Acc Chem Res; 2013 Feb; 46(2):203-13. PubMed ID: 23214491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A ligation-triggered highly sensitive fluorescent assay of adenosine triphosphate based on graphene oxide.
    Zhu W; Zhao Z; Li Z; Jiang J; Shen G; Yu R
    Analyst; 2012 Dec; 137(23):5506-9. PubMed ID: 23082315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed evolution and selection of biostable L-DNA aptamers with a mirror-image DNA polymerase.
    Chen J; Chen M; Zhu TF
    Nat Biotechnol; 2022 Nov; 40(11):1601-1609. PubMed ID: 35668324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro selection of l-DNA aptamers that bind a structured d-RNA molecule.
    Dey S; Sczepanski JT
    Nucleic Acids Res; 2020 Feb; 48(4):1669-1680. PubMed ID: 31950158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fuel-Responsive Allosteric DNA-Based Aptamers for the Transient Release of ATP and Cocaine.
    Del Grosso E; Ragazzon G; Prins LJ; Ricci F
    Angew Chem Int Ed Engl; 2019 Apr; 58(17):5582-5586. PubMed ID: 30715777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.