These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32249573)

  • 1. Microfluidic Shrinking Droplet Concentrator for Analyte Detection and Phase Separation of Protein Solutions.
    Kopp MRG; Linsenmeier M; Hettich B; Prantl S; Stavrakis S; Leroux JC; Arosio P
    Anal Chem; 2020 Apr; 92(8):5803-5812. PubMed ID: 32249573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes.
    Cedillo-Alcantar DF; Han YD; Choi J; Garcia-Cordero JL; Revzin A
    Anal Chem; 2019 Apr; 91(8):5133-5141. PubMed ID: 30834743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic droplet-array liquid-liquid chromatography based on droplet trapping technique.
    Zhu Y; Chen H; Du GS; Fang Q
    Lab Chip; 2012 Nov; 12(21):4350-4. PubMed ID: 22903271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet size based separation by deterministic lateral displacement-separating droplets by cell--induced shrinking.
    Joensson HN; Uhlén M; Svahn HA
    Lab Chip; 2011 Apr; 11(7):1305-10. PubMed ID: 21321749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic acoustophoretic force based low-concentration oil separation and detection from the environment.
    Wang H; Liu Z; Kim S; Koo C; Cho Y; Jang DY; Kim YJ; Han A
    Lab Chip; 2014 Mar; 14(5):947-56. PubMed ID: 24402640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Acquisition of X-Ray Scattering Data from Droplet-Encapsulated Protein Systems.
    Saldanha O; Graceffa R; Hémonnot CYJ; Ranke C; Brehm G; Liebi M; Marmiroli B; Weinhausen B; Burghammer M; Köster S
    Chemphyschem; 2017 May; 18(10):1220-1223. PubMed ID: 28295928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Microfluidic Droplet-Based Sample Chopper for Detection of Small Fluorescence Differences Using Lock-In Analysis.
    Negou JT; Avila LA; Li X; Hagos TM; Easley CJ
    Anal Chem; 2017 Jun; 89(11):6153-6159. PubMed ID: 28467848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
    Linsenmeier M; Kopp MRG; Stavrakis S; de Mello A; Arosio P
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118823. PubMed ID: 32800925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Demand Production of Femtoliter Drops in Microchannels and Their Use as Biological Reaction Compartments.
    Shojaeian M; Lehr FX; Göringer HU; Hardt S
    Anal Chem; 2019 Mar; 91(5):3484-3491. PubMed ID: 30715859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-module microfluidic platform for continuous pre-concentration of water-soluble ions and separation of oil droplets from oil-in-water (O/W) emulsions using a DC-biased AC electrokinetic technique.
    Das D; Phan DT; Zhao Y; Kang Y; Chan V; Yang C
    Electrophoresis; 2017 Mar; 38(5):645-652. PubMed ID: 27935087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system.
    Tan YC; Lee AP
    Lab Chip; 2005 Oct; 5(10):1178-83. PubMed ID: 16175277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles.
    Arosio P; Müller T; Mahadevan L; Knowles TP
    Nano Lett; 2014 May; 14(5):2365-71. PubMed ID: 24611748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets.
    Linsenmeier M; Kopp MRG; Grigolato F; Emmanoulidis L; Liu D; Zürcher D; Hondele M; Weis K; Capasso Palmiero U; Arosio P
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14489-14494. PubMed ID: 31334587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic approach to the formation of internally porous polymer particles by solvent extraction.
    Watanabe T; G Lopez C; Douglas JF; Ono T; Cabral JT
    Langmuir; 2014 Mar; 30(9):2470-9. PubMed ID: 24568261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-droplet cell concentration using dielectrophoresis.
    Han SI; Soo Kim H; Han A
    Biosens Bioelectron; 2017 Nov; 97():41-45. PubMed ID: 28554044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Platform for Multimodal Analysis of Enzyme Secretion in Nanoliter Droplet Arrays.
    Haidas D; Bachler S; Köhler M; Blank LM; Zenobi R; Dittrich PS
    Anal Chem; 2019 Feb; 91(3):2066-2073. PubMed ID: 30571917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Design of Phase Separation for Microfluidic Droplet-Based Liquid Phase Microextraction as a Front End to Electrothermal Vaporization-ICPMS for the Analysis of Trace Metals in Cells.
    Yu X; Chen B; He M; Wang H; Tian S; Hu B
    Anal Chem; 2018 Aug; 90(16):10078-10086. PubMed ID: 30039697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.