These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 32249574)

  • 21. Environment-Adaptable Rotational Energy Harvesters Based on Nylon-core Coiled Carbon Nanotube Yarns.
    Mun TJ; Moon JH; Park JW; Baughman RH; Kim SJ
    Small Methods; 2023 Oct; 7(10):e2300526. PubMed ID: 37317005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Highly Flexible Piezoelectric Ultrasonic Sensor for Wearable Bone Density Testing.
    Song Z; Wang B; Zhang Z; Yu Y; Lin D
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electromagnetic Energy Harvester Targeting Wearable and Biomedical Applications.
    Digregorio G; Redouté JM
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review of piezoelectric-electromagnetic hybrid energy harvesters for different applications.
    Han Y; He L; Sun L; Wang H; Zhang Z; Cheng G
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37796092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wind Energy Harvesting with Vertically Aligned Piezoelectric Inverted Flags.
    Yang K; Cioncolini A; Revell A; Nabawy MRA
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of a 3D Piezo-Magneto-Elastic Energy Harvester with Axisymmetric Multi-Stability.
    Litak G; Klimek M; Giri AM; Wolszczak P
    Micromachines (Basel); 2024 Jul; 15(7):. PubMed ID: 39064417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Current Development of Energy Harvesting Systems for Energy-Independent Bioimplantable Biosensors.
    Choi H; Biswas S; Lang P; Bae JH; Kim H
    Small; 2024 Jul; ():e2403899. PubMed ID: 38984756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A flexible omnidirectional rotating magnetic array for MRI-safe transdermal wireless energy harvesting through flexible electronics.
    Zhou M; Mao S; Wu Z; Li Y; Yang Z; Liu X; Ling W; Li J; Cui B; Guo Y; Guo R; Huo W; Huang X
    Sci Adv; 2023 Aug; 9(33):eadi5451. PubMed ID: 37585524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Efficiency Photovoltaic Modules on a Chip for Millimeter-Scale Energy Harvesting.
    Moon E; Lee I; Blaauw D; Phillips JD
    Prog Photovolt; 2019 Jun; 27(6):540-546. PubMed ID: 34354330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-planar dielectrics derived thermal and electrostatic field inhomogeneity for boosted weather-adaptive energy harvesting.
    Zhou Y; Ding T; Cheng Y; Huang Y; Wang W; Yang J; Xie L; Ho GW; He J
    Natl Sci Rev; 2023 Sep; 10(9):nwad186. PubMed ID: 37565206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Batteryless BLE Module with a Piezoelectric Element Mounted on a Shoe Sole.
    Dan S; Yano Y; Wang J
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advances in Electrostatic Spinning of Polymer Fibers Functionalized with Metal-Based Nanocrystals and Biomedical Applications.
    Li H; Xu M; Shi R; Zhang A; Zhang J
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters.
    Thainiramit P; Yingyong P; Isarakorn D
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. All-in-One Piezo-Triboelectric Energy Harvester Module Based on Piezoceramic Nanofibers for Wearable Devices.
    Ji SH; Lee W; Yun JS
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18609-18616. PubMed ID: 32249574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Non-Resonant Piezoelectric-Electromagnetic-Triboelectric Hybrid Energy Harvester for Low-Frequency Human Motions.
    Tang G; Wang Z; Hu X; Wu S; Xu B; Li Z; Yan X; Xu F; Yuan D; Li P; Shi Q; Lee C
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High output piezo/triboelectric hybrid generator.
    Jung WS; Kang MG; Moon HG; Baek SH; Yoon SJ; Wang ZL; Kim SW; Kang CY
    Sci Rep; 2015 Mar; 5():9309. PubMed ID: 25791299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and Development of a 2 × 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester.
    Han B; Zhang S; Liu J; Jiang Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent developments of hybrid piezo-triboelectric nanogenerators for flexible sensors and energy harvesters.
    Zhang J; He Y; Boyer C; Kalantar-Zadeh K; Peng S; Chu D; Wang CH
    Nanoscale Adv; 2021 Sep; 3(19):5465-5486. PubMed ID: 36133277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices.
    Pu X; Hu W; Wang ZL
    Small; 2018 Jan; 14(1):. PubMed ID: 29194960
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.