These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32249695)

  • 1. A molecular dynamics investigation on transporting mechanism of glucose through a cyclic peptide nanotube.
    Joozdani FA; Taghdir M
    J Biomol Struct Dyn; 2021 Apr; 39(6):2230-2241. PubMed ID: 32249695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical studies on the transport mechanism of 5-fluorouracil through cyclic peptide based nanotubes.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    Phys Chem Chem Phys; 2013 Jan; 15(4):1260-70. PubMed ID: 23229174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes.
    Li R; Fan J; Li H; Yan X; Yu Y
    J Chem Phys; 2015 Jul; 143(1):015101. PubMed ID: 26156492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Assembly Mechanisms and Transport Properties of Transmembrane End-Charged Cyclic Peptide Nanotubes.
    Gong T; Fan J
    J Chem Inf Model; 2021 Jun; 61(6):2754-2765. PubMed ID: 34128668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the dynamic behaviors and transport properties of gas molecules in a transmembrane cyclic peptide nanotube.
    Li R; Fan J; Li H; Yan X; Yu Y
    J Phys Chem B; 2013 Dec; 117(48):14916-27. PubMed ID: 24245847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of stability and transport of molecules through cyclic peptide nanotube and aquaporin: a molecular dynamics simulation approach.
    Maroli N; Kolandaivel P
    J Biomol Struct Dyn; 2020 Jan; 38(1):186-199. PubMed ID: 30678549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the diameter of cyclic peptide nanotube on its chirality discrimination.
    Farrokhpour H; Mansouri A; Rajabi AR; Najafi Chermahini A
    J Biomol Struct Dyn; 2019 Feb; 37(3):691-701. PubMed ID: 29393002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport behavior of a single Ca(2+), K(+), and Na(+) in a water-filled transmembrane cyclic peptide nanotube.
    Yan X; Fan J; Yu Y; Xu J; Zhang M
    J Chem Inf Model; 2015 May; 55(5):998-1011. PubMed ID: 25894098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different transport behaviors of NH4 (+) and NH3 in transmembrane cyclic peptide nanotubes.
    Zhang M; Fan J; Xu J; Weng P; Lin H
    J Mol Model; 2016 Oct; 22(10):233. PubMed ID: 27600817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic behavior and selective adsorption of a methanol/water mixture inside a cyclic peptide nanotube.
    Si X; Fan J; Xu J; Zhao X; Zhang L; Qu M
    J Mol Model; 2018 Jun; 24(7):184. PubMed ID: 29959542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose derivatives substitution and cyclic peptide diameter effects on the stability of the self-assembled cyclic peptide nanotubes; a joint QM/MD study.
    Khavani M; Izadyar M; Housaindokht MR
    J Mol Graph Model; 2017 Jan; 71():28-39. PubMed ID: 27837688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport properties of simple organic molecules in a transmembrane cyclic peptide nanotube.
    Xu J; Fan JF; Zhang MM; Weng PP; Lin HF
    J Mol Model; 2016 May; 22(5):107. PubMed ID: 27083567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of chloroform from a dilute solution using a cyclic peptide nanotube: A molecular dynamics study.
    Zhao X; Fan JF; Si XL; Zhang LL; Qu MN
    J Mol Graph Model; 2018 Aug; 83():74-83. PubMed ID: 29778743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the structure and stability of cyclic peptide based nanotubes using oligomeric approach: a computational chemistry investigation.
    Vijayaraj R; Sundar Raman S; Mahesh Kumar R; Subramanian V
    J Phys Chem B; 2010 Dec; 114(49):16574-83. PubMed ID: 21087024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical design of the cyclic lipopeptide nanotube as a molecular channel in the lipid bilayer, molecular dynamics and quantum mechanics approach.
    Khavani M; Izadyar M; Housaindokht MR
    Phys Chem Chem Phys; 2015 Oct; 17(38):25536-49. PubMed ID: 26366633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Cyclic Peptide Nanotube Stability Across Diverse Lipid Bilayers and Unveiling Water Transport Dynamics.
    Moral R; Paul S
    Langmuir; 2024 Jan; 40(1):882-895. PubMed ID: 38134046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational Effects in the Transport of Glucose through a Cyclic Peptide Nanotube: A Molecular Dynamics Simulation Study.
    Seo Y; Song Y; Schatz GC; Hwang H
    J Phys Chem B; 2018 Aug; 122(34):8174-8184. PubMed ID: 30086632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics and umbrella sampling study of stabilizing factors in cyclic peptide-based nanotubes.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    J Phys Chem B; 2012 Aug; 116(33):9922-33. PubMed ID: 22804626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent.
    Vijayakumar V; Vijayaraj R; Peters GH
    J Mol Model; 2016 Nov; 22(11):264. PubMed ID: 27734210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combined molecular dynamic and quantum mechanic study of the solvent and guest molecule effect on the stability and length of heterocyclic peptide nanotubes.
    Izadyar M; Khavani M; Housaindokht MR
    Phys Chem Chem Phys; 2015 May; 17(17):11382-91. PubMed ID: 25848975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.