These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32249697)

  • 1. A new method with an explant culture of the utricle for assessing the influence of exposure to low-frequency noise on the vestibule.
    Ohgami N; He T; Oshino-Negishi R; Gu Y; Li X; Kato M
    J Toxicol Environ Health A; 2020 Mar; 83(5):215-218. PubMed ID: 32249697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock protein 70 is a key molecule to rescue imbalance caused by low-frequency noise.
    Negishi-Oshino R; Ohgami N; He T; Li X; Kato M; Kobayashi M; Gu Y; Komuro K; Angelidis CE; Kato M
    Arch Toxicol; 2019 Nov; 93(11):3219-3228. PubMed ID: 31576414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk Assessment of Neonatal Exposure to Low Frequency Noise Based on Balance in Mice.
    Ohgami N; Oshino R; Ninomiya H; Li X; Kato M; Yajima I; Kato M
    Front Behav Neurosci; 2017; 11():30. PubMed ID: 28275341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic exposure to low frequency noise at moderate levels causes impaired balance in mice.
    Tamura H; Ohgami N; Yajima I; Iida M; Ohgami K; Fujii N; Itabe H; Kusudo T; Yamashita H; Kato M
    PLoS One; 2012; 7(6):e39807. PubMed ID: 22768129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased expression level of Hsp70 in the inner ears of mice by exposure to low frequency noise.
    Ninomiya H; Ohgami N; Oshino R; Kato M; Ohgami K; Li X; Shen D; Iida M; Yajima I; Angelidis CE; Adachi H; Katsuno M; Sobue G; Kato M
    Hear Res; 2018 Jun; 363():49-54. PubMed ID: 29519617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "In-bone" utricle cultures--a simplified, atraumatic technique for in situ cultures of the adult mouse (Mus musculus) utricle.
    Ou HC; Lin V; Rubel EW
    Otol Neurotol; 2013 Feb; 34(2):353-9. PubMed ID: 23444481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular endothelium as a target tissue for short-term exposure to low-frequency noise that increases cutaneous blood flow.
    Deng Y; Ohgami N; Kagawa T; Kurniasari F; Chen D; Kato M; Tazaki A; Aoki M; Katsuta H; Tong K; Gu Y; Kato M
    Sci Total Environ; 2022 Dec; 851(Pt 1):158828. PubMed ID: 36191705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary findings of a reduction of otoconia in the inner ear of adult rats prenatally exposed to phenytoin.
    Minck DR; Erway LC; Vorhees CV
    Neurotoxicol Teratol; 1989; 11(3):307-11. PubMed ID: 2787890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impulse noise induced damage in the vestibular end organs of the guinea pig. A light microscopic study.
    Ylikoski J
    Acta Otolaryngol; 1987; 103(5-6):415-21. PubMed ID: 3497521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effects of Low-Frequency Noise on Rats: Evidence of Chromosomal Aberrations in the Bone Marrow Cells and the Release of Low-Molecular-Weight DNA in the Blood Plasma.
    Vasilyeva IN; Bespalov VG; Semenov AL; Baranenko DA; Zinkin VN
    Noise Health; 2017; 19(87):79-83. PubMed ID: 29192617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes of the globular substance in the otoconial membrane of mice.
    Suzuki H; Ikeda K; Takasaka T
    Laryngoscope; 1997 Mar; 107(3):378-81. PubMed ID: 9121317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of low-frequency noise from wind turbines under different weather conditions.
    Chiu CH; Lung SC
    J Environ Health Sci Eng; 2020 Dec; 18(2):505-514. PubMed ID: 33312579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compound gravity receptor polarization vectors evidenced by linear vestibular evoked potentials.
    Jones SM; Jones TA; Bell PL; Taylor MJ
    Hear Res; 2001 Apr; 154(1-2):54-61. PubMed ID: 11423215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The effect of low frequency noise on human mental performance].
    Pawlaczyk-Łuszczyńska M; Dudarewicz A; Waszkowska M; Szymczak W; Kameduła M; Sliwińska-Kowalska M
    Med Pr; 2004; 55(1):63-74. PubMed ID: 15156769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term measurement study of urban environmental low frequency noise.
    Leaffer DJ; Suh H; Durant JL; Tracey B; Roof C; Gute DM
    J Expo Sci Environ Epidemiol; 2023 Sep; ():. PubMed ID: 37696975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of noise fluctuation and spectral bandwidth on gap detection.
    Hall JW; Buss E; Ozmeral EJ; Grose JH
    J Acoust Soc Am; 2016 Apr; 139(4):1601. PubMed ID: 27106308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of low-frequency noise from wind turbines on heart rate variability in healthy individuals.
    Chiu CH; Lung SC; Chen N; Hwang JS; Tsou MM
    Sci Rep; 2021 Sep; 11(1):17817. PubMed ID: 34497296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of low-frequency noise on human mental performance.
    Pawlaczyk-Luszczyńiska M; Dudarewicz A; Waszkowska M; Szymczak W; Sliwińska-Kowalska M
    Int J Occup Med Environ Health; 2005; 18(2):185-98. PubMed ID: 16201210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Otoconial pathology in a strain of the waltzing guinea pig.
    Sobin A; Anniko M
    Am J Otol; 1986 Nov; 7(6):449-53. PubMed ID: 3492919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vestibular short-latency evoked potential abolished by low-frequency noise exposure in rats.
    Stewart CE; Kanicki AC; Altschuler RA; King WM
    J Neurophysiol; 2018 Feb; 119(2):662-667. PubMed ID: 29118200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.