These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32249723)

  • 1. The role of solvents and oxygen-containing functional groups on the adsorption of Bisphenol A on carbon nanotubes.
    Yang D; Gao P; Ren X; Niu Y; Wu Z; Gu Z; Peng H
    Environ Technol; 2021 Nov; 42(27):4260-4268. PubMed ID: 32249723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and equilibrium of the sorption of bisphenol A by carbon nanotubes from wastewater.
    Bohdziewicz J; Kamińska G
    Water Sci Technol; 2013; 68(6):1306-14. PubMed ID: 24056428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of hydrophobic effect to the sorption of phenanthrene, 9-phenanthrol and 9, 10-phenanthrenequinone on carbon nanotubes.
    Peng H; Zhang D; Pan B; Peng J
    Chemosphere; 2017 Feb; 168():739-747. PubMed ID: 27836280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of bisphenol A to a carbon nanotube reduced its endocrine disrupting effect in mice male offspring.
    Wang W; Jiang C; Zhu L; Liang N; Liu X; Jia J; Zhang C; Zhai S; Zhang B
    Int J Mol Sci; 2014 Sep; 15(9):15981-93. PubMed ID: 25210847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption mechanism of different organic chemicals on fluorinated carbon nanotubes.
    Li H; Zheng N; Liang N; Zhang D; Wu M; Pan B
    Chemosphere; 2016 Jul; 154():258-265. PubMed ID: 27058918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes.
    Zhang D; Pan B; Zhang H; Ning P; Xing B
    Environ Sci Technol; 2010 May; 44(10):3806-11. PubMed ID: 20394427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics.
    Li H; Zhang D; Han X; Xing B
    Chemosphere; 2014 Jan; 95():150-5. PubMed ID: 24094774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of micropollutants and NOM in carbon nanotube-UF membrane system from seawater.
    Heo J; Joseph L; Yoon Y; Park YG; Her N; Sohn J; Yoon SH
    Water Sci Technol; 2011; 63(11):2737-44. PubMed ID: 22049773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural benefits of bisphenol S and its analogs resulting in their high sorption on carbon nanotubes and graphite.
    Guo H; Li H; Liang N; Chen F; Liao S; Zhang D; Wu M; Pan B
    Environ Sci Pollut Res Int; 2016 May; 23(9):8976-84. PubMed ID: 26822215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes.
    Wang Z; Yu X; Pan B; Xing B
    Environ Sci Technol; 2010 Feb; 44(3):978-84. PubMed ID: 20030389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of ofloxacin on carbon nanotubes: solubility, pH and cosolvent effects.
    Peng H; Pan B; Wu M; Liu R; Zhang D; Wu D; Xing B
    J Hazard Mater; 2012 Apr; 211-212():342-8. PubMed ID: 22264890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption removal of antiviral drug oseltamivir and its metabolite oseltamivir carboxylate by carbon nanotubes: Effects of carbon nanotube properties and media.
    Wang WL; Wu QY; Wang ZM; Niu LX; Wang C; Sun MC; Hu HY
    J Environ Manage; 2015 Oct; 162():326-33. PubMed ID: 26265601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups.
    Lin D; Xingt B
    Environ Sci Technol; 2008 Oct; 42(19):7254-9. PubMed ID: 18939555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of hybrid carbon nanotubes using Brassica juncea L. application to photodegradation of bisphenol A.
    Qu J; Luo C; Yuan X
    Environ Sci Pollut Res Int; 2013 Jun; 20(6):3688-95. PubMed ID: 23135755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of bisphenol A and 17α-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes.
    Joseph L; Zaib Q; Khan IA; Berge ND; Park YG; Saleh NB; Yoon Y
    Water Res; 2011 Jul; 45(13):4056-68. PubMed ID: 21664640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption of endocrine disrupting chemicals by condensed organic matter in soils and sediments.
    Sun K; Gao B; Zhang Z; Zhang G; Liu X; Zhao Y; Xing B
    Chemosphere; 2010 Aug; 80(7):709-15. PubMed ID: 20579690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption of organophosphate esters by carbon nanotubes.
    Yan W; Yan L; Duan J; Jing C
    J Hazard Mater; 2014 May; 273():53-60. PubMed ID: 24721694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cosorption of organic chemicals with different properties: their shared and different sorption sites.
    Zhang D; Pan B; Wu M; Zhang H; Peng H; Ning P; Xing B
    Environ Pollut; 2012 Jan; 160(1):178-84. PubMed ID: 22035942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced adsorption of bisphenol A, tylosin, and tetracycline from aqueous solution to nitrogen-doped multiwall carbon nanotubes via cation-π and π-π electron-donor-acceptor (EDA) interactions.
    Yi L; Zuo L; Wei C; Fu H; Qu X; Zheng S; Xu Z; Guo Y; Li H; Zhu D
    Sci Total Environ; 2020 Jun; 719():137389. PubMed ID: 32120097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes.
    Liu FF; Zhao J; Wang S; Du P; Xing B
    Environ Sci Technol; 2014 Nov; 48(22):13197-206. PubMed ID: 25353977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.