These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 32250111)
21. Insights into aggregation and transport of graphene oxide in aqueous and saturated porous media: Complex effects of cations with different molecular weight fractionated natural organic matter. Shen M; Hai X; Shang Y; Zheng C; Li P; Li Y; Jin W; Li D; Li Y; Zhao J; Lei H; Xiao H; Li Y; Yan G; Cao Z; Bu Q Sci Total Environ; 2019 Mar; 656():843-851. PubMed ID: 30530152 [TBL] [Abstract][Full Text] [Related]
22. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles. Deonarine A; Lau BL; Aiken GR; Ryan JN; Hsu-Kim H Environ Sci Technol; 2011 Apr; 45(8):3217-23. PubMed ID: 21291228 [TBL] [Abstract][Full Text] [Related]
23. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite. Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181 [TBL] [Abstract][Full Text] [Related]
24. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Stankus DP; Lohse SE; Hutchison JE; Nason JA Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562 [TBL] [Abstract][Full Text] [Related]
25. Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes. Ateia M; Apul OG; Shimizu Y; Muflihah A; Yoshimura C; Karanfil T Environ Sci Technol; 2017 Jun; 51(12):7101-7110. PubMed ID: 28537710 [TBL] [Abstract][Full Text] [Related]
26. Molecular-weight dependent promotion and competition effects of natural organic matter on dissolved black carbon removal by coagulation. Liu M; Lu Q; Siddique MS; Yu W Chemosphere; 2024 May; 356():141940. PubMed ID: 38588894 [TBL] [Abstract][Full Text] [Related]
27. Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. Louie SM; Tilton RD; Lowry GV Environ Sci Technol; 2013 May; 47(9):4245-54. PubMed ID: 23550560 [TBL] [Abstract][Full Text] [Related]
28. Binding of Hg to preformed ferrihydrite-humic acid composites synthesized via co-precipitation and adsorption with different morphologies. Liu Y; Cheng Z; Zhi L; Zhou S Ecotoxicol Environ Saf; 2020 Nov; 204():111097. PubMed ID: 32784016 [TBL] [Abstract][Full Text] [Related]
29. Effect of polydispersity on natural organic matter transport. Seders Dietrich LA; McInnis DP; Bolster D; Maurice PA Water Res; 2013 May; 47(7):2231-40. PubMed ID: 23490097 [TBL] [Abstract][Full Text] [Related]
30. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments. Xue Q; Ran Y; Tan Y; Peacock CL; Du H Chemosphere; 2019 Jun; 224():103-110. PubMed ID: 30818188 [TBL] [Abstract][Full Text] [Related]
31. Enhancing effects of dissolved and media surface-bound organic matter on titanium dioxide nanoparticles transport in iron oxide-coated porous media under acidic conditions. Zhang R; Tu C; Zhang H; Luo Y J Hazard Mater; 2022 Sep; 438():129421. PubMed ID: 35779396 [TBL] [Abstract][Full Text] [Related]
32. Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Chowdhury I; Cwiertny DM; Walker SL Environ Sci Technol; 2012 Jul; 46(13):6968-76. PubMed ID: 22455349 [TBL] [Abstract][Full Text] [Related]
33. Effects of source and seasonal variations of natural organic matters on the fate and transport of CeO Li Z; Sahle-Demessie E; Aly Hassan A; Pressman JG; Sorial GA; Han C Sci Total Environ; 2017 Dec; 609():1616-1626. PubMed ID: 28810513 [TBL] [Abstract][Full Text] [Related]
34. Unbound Natural Organic Matter Competes with Nanoparticles for Internalization Receptors During Cell Uptake. Zhao YT; Yan S; Huang B; Yang L; Ding HM; Wang P; Miao AJ Environ Sci Technol; 2020 Dec; 54(23):15215-15224. PubMed ID: 33169997 [TBL] [Abstract][Full Text] [Related]
35. Impact of montmorillonite clay on the homo- and heteroaggregation of titanium dioxide nanoparticles (nTiO Wang J; Zhao X; Wu F; Tang Z; Zhao T; Niu L; Fang M; Wang H; Wang F Sci Total Environ; 2021 Aug; 784():147019. PubMed ID: 34088034 [TBL] [Abstract][Full Text] [Related]
36. Formation and Transport of Cr(III)-NOM-Fe Colloids upon Reaction of Cr(VI) with NOM-Fe(II) Colloids at Anoxic-Oxic Interfaces. Liao P; Pan C; Ding W; Li W; Yuan S; Fortner JD; Giammar DE Environ Sci Technol; 2020 Apr; 54(7):4256-4266. PubMed ID: 32163701 [TBL] [Abstract][Full Text] [Related]
37. Partitioning behavior and stabilization of hydrophobically coated HfO2, ZrO2 and Hfx Zr 1-x O2 nanoparticles with natural organic matter reveal differences dependent on crystal structure. Navarro DA; Depner SW; Watson DF; Aga DS; Banerjee S J Hazard Mater; 2011 Nov; 196():302-10. PubMed ID: 21963173 [TBL] [Abstract][Full Text] [Related]
38. Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media. Jiang X; Tong M; Kim H J Colloid Interface Sci; 2012 Nov; 386(1):34-43. PubMed ID: 22840876 [TBL] [Abstract][Full Text] [Related]
39. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand. Wang D; Zhang W; Zhou D Environ Sci Technol; 2013 May; 47(10):5154-61. PubMed ID: 23614641 [TBL] [Abstract][Full Text] [Related]
40. Interactions of CeO Li X; He E; Zhang M; Peijnenburg WJGM; Liu Y; Song L; Cao X; Zhao L; Qiu H J Hazard Mater; 2020 Mar; 386():121973. PubMed ID: 31884366 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]