These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 32250111)
41. Natural organic matter undergoes different molecular sieving by adsorption on activated carbon and carbon nanotubes. Shimizu Y; Ateia M; Yoshimura C Chemosphere; 2018 Jul; 203():345-352. PubMed ID: 29626812 [TBL] [Abstract][Full Text] [Related]
42. Influence of macromolecules on aggregation kinetics of diesel soot nanoparticles in aquatic environments. Chen C; Wei J; Li J; Duan Z; Huang W Environ Pollut; 2019 Sep; 252(Pt B):1892-1901. PubMed ID: 31227348 [TBL] [Abstract][Full Text] [Related]
43. Colloidal stability of Fe Wang H; Zhao X; Han X; Tang Z; Song F; Zhang S; Zhu Y; Guo W; He Z; Guo Q; Wu F; Meng X; Giesy JP Environ Pollut; 2018 Oct; 241():912-921. PubMed ID: 29920469 [TBL] [Abstract][Full Text] [Related]
44. The effects of extracellular polymeric substances on magnetic iron oxide nanoparticles stability and the removal of microcystin-LR in aqueous environments. Yang Y; Hou J; Wang P; Wang C; Miao L; Ao Y; Wang X; Lv B; You G; Liu Z; Shao Y Ecotoxicol Environ Saf; 2018 Feb; 148():89-96. PubMed ID: 29031879 [TBL] [Abstract][Full Text] [Related]
45. Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids. Ghosh S; Mashayekhi H; Bhowmik P; Xing B Langmuir; 2010 Jan; 26(2):873-9. PubMed ID: 19813721 [TBL] [Abstract][Full Text] [Related]
46. Potential impact of natural organic ligands on the colloidal stability of silver nanoparticles. Afshinnia K; Marrone B; Baalousha M Sci Total Environ; 2018 Jun; 625():1518-1526. PubMed ID: 29996448 [TBL] [Abstract][Full Text] [Related]
47. Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter. Smith B; Yang J; Bitter JL; Ball WP; Fairbrother DH Environ Sci Technol; 2012 Dec; 46(23):12839-47. PubMed ID: 23145852 [TBL] [Abstract][Full Text] [Related]
48. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. Park HS; Koduru JR; Choo KH; Lee B J Hazard Mater; 2015 Apr; 286():315-24. PubMed ID: 25594935 [TBL] [Abstract][Full Text] [Related]
49. Natural organic matter flocculation behavior controls lead phosphate particle aggregation by mono- and divalent cations. Zhao J; Mathew RA; Yang DS; Vekilov PG; Hu Y; Louie SM Sci Total Environ; 2023 Mar; 866():161346. PubMed ID: 36603637 [TBL] [Abstract][Full Text] [Related]
50. Aggregation and stability of sulfate-modified polystyrene nanoplastics in synthetic and natural waters. Wang J; Zhao X; Wu A; Tang Z; Niu L; Wu F; Wang F; Zhao T; Fu Z Environ Pollut; 2021 Jan; 268(Pt A):114240. PubMed ID: 33152633 [TBL] [Abstract][Full Text] [Related]
51. Role of pH and ionic strength in the aggregation of TiO Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037 [TBL] [Abstract][Full Text] [Related]
52. Influence of humic acid and dihydroxy benzoic acid on the agglomeration, adsorption, sedimentation and dissolution of copper, manganese, aluminum and silica nanoparticles - A tentative exposure scenario. Pradhan S; Hedberg J; Rosenqvist J; Jonsson CM; Wold S; Blomberg E; Odnevall Wallinder I PLoS One; 2018; 13(2):e0192553. PubMed ID: 29420670 [TBL] [Abstract][Full Text] [Related]
53. Interpreting the effects of natural organic matter on antimicrobial activity of Ag Liu Y; Yang T; Wang L; Huang Z; Li J; Cheng H; Jiang J; Pang S; Qi J; Ma J Water Res; 2018 Nov; 145():12-20. PubMed ID: 30118974 [TBL] [Abstract][Full Text] [Related]
54. Effects of Natural Organic Matter Properties on the Dissolution Kinetics of Zinc Oxide Nanoparticles. Jiang C; Aiken GR; Hsu-Kim H Environ Sci Technol; 2015 Oct; 49(19):11476-84. PubMed ID: 26355264 [TBL] [Abstract][Full Text] [Related]
55. Complexation of arsenate to humic acid with different molecular weight fractions in aqueous solution. Li S; Lu F; Lv H; Zhou Y; Gomez MA; Yao S; Shi Z; Jia Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(13):1428-1434. PubMed ID: 34870539 [TBL] [Abstract][Full Text] [Related]
56. Copper release from copper nanoparticles in the presence of natural organic matter. Wang LF; Habibul N; He DQ; Li WW; Zhang X; Jiang H; Yu HQ Water Res; 2015 Jan; 68():12-23. PubMed ID: 25462713 [TBL] [Abstract][Full Text] [Related]
57. Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid. Mohd Omar F; Abdul Aziz H; Stoll S Sci Total Environ; 2014 Jan; 468-469():195-201. PubMed ID: 24029691 [TBL] [Abstract][Full Text] [Related]
58. Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Phenrat T; Song JE; Cisneros CM; Schoenfelder DP; Tilton RD; Lowry GV Environ Sci Technol; 2010 Jun; 44(12):4531-8. PubMed ID: 20465214 [TBL] [Abstract][Full Text] [Related]
59. Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents. Van Hoecke K; De Schamphelaere KA; Ramirez-Garcia S; Van der Meeren P; Smagghe G; Janssen CR Environ Int; 2011 Aug; 37(6):1118-25. PubMed ID: 21377208 [TBL] [Abstract][Full Text] [Related]
60. Effects of natural organic matter on the coprecipitation of arsenic with iron. Kim EJ; Hwang BR; Baek K Environ Geochem Health; 2015 Dec; 37(6):1029-39. PubMed ID: 25754698 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]