These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 32250113)
1. Cationic Amphiphilic Drugs Boost the Lysosomal Escape of Small Nucleic Acid Therapeutics in a Nanocarrier-Dependent Manner. Van de Vyver T; Bogaert B; De Backer L; Joris F; Guagliardo R; Van Hoeck J; Merckx P; Van Calenbergh S; Ramishetti S; Peer D; Remaut K; De Smedt SC; Raemdonck K ACS Nano; 2020 Apr; 14(4):4774-4791. PubMed ID: 32250113 [TBL] [Abstract][Full Text] [Related]
2. Repurposing cationic amphiphilic drugs as adjuvants to induce lysosomal siRNA escape in nanogel transfected cells. Joris F; De Backer L; Van de Vyver T; Bastiancich C; De Smedt SC; Raemdonck K J Control Release; 2018 Jan; 269():266-276. PubMed ID: 29146245 [TBL] [Abstract][Full Text] [Related]
3. The alpha-adrenergic antagonist prazosin promotes cytosolic siRNA delivery from lysosomal compartments. Van de Vyver T; Muntean C; Efimova I; Krysko DV; De Backer L; De Smedt SC; Raemdonck K J Control Release; 2023 Dec; 364():142-158. PubMed ID: 37816483 [TBL] [Abstract][Full Text] [Related]
4. Beyond chloroquine: Cationic amphiphilic drugs as endosomal escape enhancers for nucleic acid therapeutics. Debisschop A; Bogaert B; Muntean C; De Smedt SC; Raemdonck K Curr Opin Chem Biol; 2024 Dec; 83():102531. PubMed ID: 39369558 [TBL] [Abstract][Full Text] [Related]
6. Repositioning the antihistamine ebastine as an intracellular siRNA delivery enhancer. Muntean C; Blondeel E; Harinck L; Pednekar K; Prakash J; De Wever O; Chain JL; De Smedt SC; Remaut K; Raemdonck K Int J Pharm; 2023 Sep; 644():123348. PubMed ID: 37633539 [TBL] [Abstract][Full Text] [Related]
7. A lipid nanoparticle platform for mRNA delivery through repurposing of cationic amphiphilic drugs. Bogaert B; Sauvage F; Guagliardo R; Muntean C; Nguyen VP; Pottie E; Wels M; Minnaert AK; De Rycke R; Yang Q; Peer D; Sanders N; Remaut K; Paulus YM; Stove C; De Smedt SC; Raemdonck K J Control Release; 2022 Oct; 350():256-270. PubMed ID: 35963467 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: A platform for investigating early endosomal events. Majzoub RN; Chan CL; Ewert KK; Silva BF; Liang KS; Safinya CR Biochim Biophys Acta; 2015 Jun; 1848(6):1308-18. PubMed ID: 25753113 [TBL] [Abstract][Full Text] [Related]
9. Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery. Chen G; Wang Y; Xie R; Gong S J Control Release; 2017 Aug; 259():105-114. PubMed ID: 28159516 [TBL] [Abstract][Full Text] [Related]
10. Neutralization of negative charges of siRNA results in improved safety and efficient gene silencing activity of lipid nanoparticles loaded with high levels of siRNA. Sato Y; Matsui H; Sato R; Harashima H J Control Release; 2018 Aug; 284():179-187. PubMed ID: 29936118 [TBL] [Abstract][Full Text] [Related]
11. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Gujrati M; Malamas A; Shin T; Jin E; Sun Y; Lu ZR Mol Pharm; 2014 Aug; 11(8):2734-44. PubMed ID: 25020033 [TBL] [Abstract][Full Text] [Related]
12. Self-assembly cationic nanoparticles based on cholesterol-grafted bioreducible poly(amidoamine) for siRNA delivery. Chen CJ; Wang JC; Zhao EY; Gao LY; Feng Q; Liu XY; Zhao ZX; Ma XF; Hou WJ; Zhang LR; Lu WL; Zhang Q Biomaterials; 2013 Jul; 34(21):5303-16. PubMed ID: 23570718 [TBL] [Abstract][Full Text] [Related]
13. Systemic siRNA delivery to tumors by cell-penetrating α-helical polypeptide-based metastable nanoparticles. Liu Y; Song Z; Zheng N; Nagasaka K; Yin L; Cheng J Nanoscale; 2018 Aug; 10(32):15339-15349. PubMed ID: 30070662 [TBL] [Abstract][Full Text] [Related]
14. Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-L-lysine nanocarrier to suppress prostate cancer growth in mice. Guo J; Cheng WP; Gu J; Ding C; Qu X; Yang Z; O'Driscoll C Eur J Pharm Sci; 2012 Apr; 45(5):521-32. PubMed ID: 22186295 [TBL] [Abstract][Full Text] [Related]
15. Artificial Nucleobase-Directed Programmable Synthesis and Assembly of Amphiphilic Nucleic Acids as an All-in-One Platform for Cation-Free siRNA Delivery. Luo C; Xie Y; He M; Xia Y; Li Y; He L; Li J; Wang L; Han X; Zhang L; Yuan X; Wang Z; Liu Y; Tan W ACS Appl Mater Interfaces; 2022 Oct; 14(39):44019-44028. PubMed ID: 36149091 [TBL] [Abstract][Full Text] [Related]
16. Super-resolution Imaging of Proton Sponge-Triggered Rupture of Endosomes and Cytosolic Release of Small Interfering RNA. Wojnilowicz M; Glab A; Bertucci A; Caruso F; Cavalieri F ACS Nano; 2019 Jan; 13(1):187-202. PubMed ID: 30566836 [TBL] [Abstract][Full Text] [Related]
17. Co-Formulation of Amphiphilic Cationic and Anionic Cyclodextrins Forming Nanoparticles for siRNA Delivery in the Treatment of Acute Myeloid Leukaemia. Kont A; Mendonça MCP; Cronin MF; Cahill MR; O'Driscoll CM Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077202 [TBL] [Abstract][Full Text] [Related]
18. Swelling, Rupture and Endosomal Escape of Biological Nanoparticles Per Se and Those Fused with Liposomes in Acidic Environment. Ponomareva N; Brezgin S; Karandashov I; Kostyusheva A; Demina P; Slatinskaya O; Bayurova E; Silachev D; Pokrovsky VS; Gegechkori V; Khaydukov E; Maksimov G; Frolova A; Gordeychuk I; Zamyatnin AA; Chulanov V; Parodi A; Kostyushev D Pharmaceutics; 2024 May; 16(5):. PubMed ID: 38794330 [TBL] [Abstract][Full Text] [Related]
19. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. Sato Y; Hashiba K; Sasaki K; Maeki M; Tokeshi M; Harashima H J Control Release; 2019 Feb; 295():140-152. PubMed ID: 30610950 [TBL] [Abstract][Full Text] [Related]
20. Imaging small molecule-induced endosomal escape of siRNA. Du Rietz H; Hedlund H; Wilhelmson S; Nordenfelt P; Wittrup A Nat Commun; 2020 Apr; 11(1):1809. PubMed ID: 32286269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]