These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32250342)

  • 21. Targeting CUB domain-containing protein 1 with a monoclonal antibody inhibits metastasis in a prostate cancer model.
    Siva AC; Wild MA; Kirkland RE; Nolan MJ; Lin B; Maruyama T; Yantiri-Wernimont F; Frederickson S; Bowdish KS; Xin H
    Cancer Res; 2008 May; 68(10):3759-66. PubMed ID: 18483259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential Role for YB-1 in Castration-Resistant Prostate Cancer and Resistance to Enzalutamide Through the Androgen Receptor V7.
    Shiota M; Fujimoto N; Imada K; Yokomizo A; Itsumi M; Takeuchi A; Kuruma H; Inokuchi J; Tatsugami K; Uchiumi T; Oda Y; Naito S
    J Natl Cancer Inst; 2016 Jul; 108(7):. PubMed ID: 26857528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The CDCP1 Signaling Hub: A Target for Cancer Detection and Therapeutic Intervention.
    Khan T; Kryza T; Lyons NJ; He Y; Hooper JD
    Cancer Res; 2021 May; 81(9):2259-2269. PubMed ID: 33509939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of tumor metastasis: functional immune modulation of the CUB domain containing protein 1.
    Fukuchi K; Steiniger SC; Deryugina E; Liu Y; Lowery CA; Gloeckner C; Zhou B; Kaufmann GF; Quigley JP; Janda KD
    Mol Pharm; 2010 Feb; 7(1):245-53. PubMed ID: 19916495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metastatic prostate cancer-derived extracellular vesicles facilitate osteoclastogenesis by transferring the CDCP1 protein.
    Urabe F; Kosaka N; Yamamoto Y; Ito K; Otsuka K; Soekmadji C; Egawa S; Kimura T; Ochiya T
    J Extracell Vesicles; 2023 Mar; 12(3):e12312. PubMed ID: 36880252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer.
    Abudurexiti M; Zhu W; Wang Y; Wang J; Xu W; Huang Y; Zhu Y; Shi G; Zhang H; Zhu Y; Shen Y; Dai B; Wan F; Lin G; Ye D
    Prostate; 2020 Sep; 80(12):950-961. PubMed ID: 32648618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High expression of TROP2 characterizes different cell subpopulations in androgen-sensitive and androgen-independent prostate cancer cells.
    Xie J; Mølck C; Paquet-Fifield S; Butler L; ; Sloan E; Ventura S; Hollande F
    Oncotarget; 2016 Jul; 7(28):44492-44504. PubMed ID: 27283984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzalutamide, an androgen receptor signaling inhibitor, induces tumor regression in a mouse model of castration-resistant prostate cancer.
    Guerrero J; Alfaro IE; Gómez F; Protter AA; Bernales S
    Prostate; 2013 Sep; 73(12):1291-305. PubMed ID: 23765603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer.
    Lunardi A; Ala U; Epping MT; Salmena L; Clohessy JG; Webster KA; Wang G; Mazzucchelli R; Bianconi M; Stack EC; Lis R; Patnaik A; Cantley LC; Bubley G; Cordon-Cardo C; Gerald WL; Montironi R; Signoretti S; Loda M; Nardella C; Pandolfi PP
    Nat Genet; 2013 Jul; 45(7):747-55. PubMed ID: 23727860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GLUT1 is an AR target contributing to tumor growth and glycolysis in castration-resistant and enzalutamide-resistant prostate cancers.
    Wang J; Xu W; Wang B; Lin G; Wei Y; Abudurexiti M; Zhu W; Liu C; Qin X; Dai B; Wan F; Zhang H; Zhu Y; Ye D
    Cancer Lett; 2020 Aug; 485():45-55. PubMed ID: 32428663
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Özgür E; Celik AI; Darendeliler E; Gezer U
    Anticancer Res; 2017 Jul; 37(7):3631-3637. PubMed ID: 28668854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tumor Cell Autonomous RON Receptor Expression Promotes Prostate Cancer Growth Under Conditions of Androgen Deprivation.
    Brown NE; Paluch AM; Nashu MA; Komurov K; Waltz SE
    Neoplasia; 2018 Sep; 20(9):917-929. PubMed ID: 30121008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The PDGFRβ/ERK1/2 pathway regulates CDCP1 expression in triple-negative breast cancer.
    Forte L; Turdo F; Ghirelli C; Aiello P; Casalini P; Iorio MV; D'Ippolito E; Gasparini P; Agresti R; Belmonte B; Sozzi G; Sfondrini L; Tagliabue E; Campiglio M; Bianchi F
    BMC Cancer; 2018 May; 18(1):586. PubMed ID: 29792166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Restoration of the cellular secretory milieu overrides androgen dependence of in vivo generated castration resistant prostate cancer cells overexpressing the androgen receptor.
    Patki M; Huang Y; Ratnam M
    Biochem Biophys Res Commun; 2016 Jul; 476(2):69-74. PubMed ID: 27179779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of MAPK Signaling by CXCR7 Leads to Enzalutamide Resistance in Prostate Cancer.
    Li S; Fong KW; Gritsina G; Zhang A; Zhao JC; Kim J; Sharp A; Yuan W; Aversa C; Yang XJ; Nelson PS; Feng FY; Chinnaiyan AM; de Bono JS; Morrissey C; Rettig MB; Yu J
    Cancer Res; 2019 May; 79(10):2580-2592. PubMed ID: 30952632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer.
    Lu W; Liu S; Li B; Xie Y; Izban MG; Ballard BR; Sathyanarayana SA; Adunyah SE; Matusik RJ; Chen Z
    Oncogene; 2017 Mar; 36(10):1364-1373. PubMed ID: 27869166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of protein kinase C/Twist1 signaling augments anticancer effects of androgen deprivation and enzalutamide in prostate cancer.
    Shiota M; Yokomizo A; Takeuchi A; Imada K; Kashiwagi E; Song Y; Inokuchi J; Tatsugami K; Uchiumi T; Naito S
    Clin Cancer Res; 2014 Feb; 20(4):951-61. PubMed ID: 24352647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oncogenic Ras/ERK signaling activates CDCP1 to promote tumor invasion and metastasis.
    Uekita T; Fujii S; Miyazawa Y; Iwakawa R; Narisawa-Saito M; Nakashima K; Tsuta K; Tsuda H; Kiyono T; Yokota J; Sakai R
    Mol Cancer Res; 2014 Oct; 12(10):1449-59. PubMed ID: 24939643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of the HER2-YB1-AR axis with Lapatinib synergistically enhances Enzalutamide anti-tumor efficacy in castration resistant prostate cancer.
    Shiota M; Bishop JL; Takeuchi A; Nip KM; Cordonnier T; Beraldi E; Kuruma H; Gleave ME; Zoubeidi A
    Oncotarget; 2015 Apr; 6(11):9086-98. PubMed ID: 25871401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-targeting hexokinase 2-mediated Warburg effect and ULK1-dependent autophagy suppresses tumor growth of PTEN- and TP53-deficiency-driven castration-resistant prostate cancer.
    Wang L; Wang J; Xiong H; Wu F; Lan T; Zhang Y; Guo X; Wang H; Saleem M; Jiang C; Lu J; Deng Y
    EBioMedicine; 2016 May; 7():50-61. PubMed ID: 27322458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.