BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32250379)

  • 1. Viscoelastic interfaces comprising of cellulose nanocrystals and lauroyl ethyl arginate for enhanced foam stability.
    Czakaj A; Kannan A; Wiśniewska A; Grześ G; Krzan M; Warszyński P; Fuller GG
    Soft Matter; 2020 Apr; 16(16):3981-3990. PubMed ID: 32250379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Influence of the Surface Chemistry of Cellulose Nanocrystals on Ethyl Lauroyl Arginate Foam Stability.
    Czakaj A; Chatzigiannakis E; Vermant J; Krzan M; Warszyński P
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobisation of Silica Nanoparticles Using Lauroyl Ethyl Arginate and Chitosan Mixtures to Induce the Foaming Process.
    Krzan M; Jarek E; Petkova H; Santini E; Szyk-Warszynska L; Ravera F; Liggieri L; Mileva E; Warszynski P
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Rheology of Charged Anisotropic Cellulose Nanocrystals at the Air-Water Interface.
    Bertsch P; Fischer P
    Langmuir; 2019 Jun; 35(24):7937-7943. PubMed ID: 31090427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulation and Stabilization of Concentrated Edible Oil-in-Water Emulsions Based on Electrostatic Complexes of a Food-Grade Cationic Surfactant (Ethyl Lauroyl Arginate) and Cellulose Nanocrystals.
    Bai L; Xiang W; Huan S; Rojas OJ
    Biomacromolecules; 2018 May; 19(5):1674-1685. PubMed ID: 29608856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction: Viscoelastic interfaces comprising of cellulose nanocrystals and lauroyl ethyl arginate for enhanced foam stability.
    Czakaj A; Kannan A; Wiśniewska A; Grześ G; Krzan M; Warszyński P; Fuller GG
    Soft Matter; 2020 Jun; 16(21):5094. PubMed ID: 32432604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystalline nanocellulose/lauric arginate complexes.
    Chi K; Catchmark JM
    Carbohydr Polym; 2017 Nov; 175():320-329. PubMed ID: 28917872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of food-grade Pickering oil-in-water emulsions: Tailoring functionality using mixtures of cellulose nanocrystals and lauric arginate.
    Angkuratipakorn T; Chung C; Koo CKW; Mundo JLM; McClements DJ; Decker EA; Singkhonrat J
    Food Chem; 2020 Oct; 327():127039. PubMed ID: 32454273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation and stabilization of high internal phase emulsions via mechanical cellulose nanofibrils/ethyl lauroyl arginate complexes.
    Huang L; Xu C; Gao W; Rojas OJ; Jiao W; Guo S; Li J
    Carbohydr Polym; 2024 Jan; 324():121541. PubMed ID: 37985062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of thin emulsion film between two oil phases with a viscoelastic liquid-liquid interface.
    Narsimhan G
    J Colloid Interface Sci; 2009 Feb; 330(2):494-500. PubMed ID: 19041985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of pH on the interfacial behaviour of Quillaja bark saponin at the air-solution interface.
    Ulaganathan V; Del Castillo L; Webber JL; Ho TTM; Ferri JK; Krasowska M; Beattie DA
    Colloids Surf B Biointerfaces; 2019 Apr; 176():412-419. PubMed ID: 30665095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable Aqueous Foams from Cellulose Nanocrystals and Methyl Cellulose.
    Hu Z; Xu R; Cranston ED; Pelton RH
    Biomacromolecules; 2016 Dec; 17(12):4095-4099. PubMed ID: 27936719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.
    Hu Z; Ballinger S; Pelton R; Cranston ED
    J Colloid Interface Sci; 2015 Feb; 439():139-48. PubMed ID: 25463186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifying the Contact Angle of Anisotropic Cellulose Nanocrystals: Effect on Interfacial Rheology and Structure.
    van den Berg MEH; Kuster S; Windhab EJ; Adamcik J; Mezzenga R; Geue T; Sagis LMC; Fischer P
    Langmuir; 2018 Sep; 34(37):10932-10942. PubMed ID: 30130966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Cellulose Nanofibrils Affect Bulk, Surface, and Foam Properties of Anionic Surfactant Solutions.
    Xiang W; Preisig N; Ketola A; Tardy BL; Bai L; Ketoja JA; Stubenrauch C; Rojas OJ
    Biomacromolecules; 2019 Dec; 20(12):4361-4369. PubMed ID: 31478654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foaming Behavior of Polymer-Coated Colloids: The Need for Thick Liquid Films.
    Yu K; Zhang H; Hodges C; Biggs S; Xu Z; Cayre OJ; Harbottle D
    Langmuir; 2017 Jul; 33(26):6528-6539. PubMed ID: 28594563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of nanoparticle aggregation on surfactant foam stability.
    AlYousef ZA; Almobarky MA; Schechter DS
    J Colloid Interface Sci; 2018 Feb; 511():365-373. PubMed ID: 29031155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations in foam collapse and thin film stability with constant interfacial and bulk properties.
    Wierenga PA; Basheva ES; Delahaije RJBM
    Adv Colloid Interface Sci; 2023 Feb; 312():102845. PubMed ID: 36709573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial properties, thin film stability and foam stability of casein micelle dispersions.
    Chen M; Sala G; Meinders MB; van Valenberg HJ; van der Linden E; Sagis LM
    Colloids Surf B Biointerfaces; 2017 Jan; 149():56-63. PubMed ID: 27721166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.