These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32250438)

  • 21. Redox equilibration after one-electron reduction of cytochrome c oxidase: radical formation and a possible hydrogen relay mechanism.
    Ashe D; Alleyne T; Wilson M; Svistunenko D; Nicholls P
    Arch Biochem Biophys; 2014 Jul; 554():36-43. PubMed ID: 24811894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ribose 5-phosphate glycation reduces cytochrome c respiratory activity and membrane affinity.
    Hildick-Smith GJ; Downey MC; Gretebeck LM; Gersten RA; Sandwick RK
    Biochemistry; 2011 Dec; 50(51):11047-57. PubMed ID: 22091532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of photoactive ruthenium complexes to study electron transfer and proton pumping in cytochrome oxidase.
    Durham B; Millett F
    Biochim Biophys Acta; 2012 Apr; 1817(4):567-74. PubMed ID: 21939635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent applications of a synthetic model of cytochrome c oxidase: beyond functional modeling.
    Collman JP; Ghosh S
    Inorg Chem; 2010 Jul; 49(13):5798-810. PubMed ID: 20527796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein--protein docking of electron transfer complexes: cytochrome c oxidase and cytochrome c.
    Flöck D; Helms V
    Proteins; 2002 Apr; 47(1):75-85. PubMed ID: 11870867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and mechanistic insights into the electron flow through protein for cytochrome c-tethering copper nitrite reductase.
    Tsuda A; Ishikawa R; Koteishi H; Tange K; Fukuda Y; Kobayashi K; Inoue T; Nojiri M
    J Biochem; 2013 Jul; 154(1):51-60. PubMed ID: 23543476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New prospects for an old enzyme: mammalian cytochrome c is tyrosine-phosphorylated in vivo.
    Lee I; Salomon AR; Yu K; Doan JW; Grossman LI; Hüttemann M
    Biochemistry; 2006 Aug; 45(30):9121-8. PubMed ID: 16866357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The protonation state of a heme propionate controls electron transfer in cytochrome c oxidase.
    Brändén G; Brändén M; Schmidt B; Mills DA; Ferguson-Miller S; Brzezinski P
    Biochemistry; 2005 Aug; 44(31):10466-74. PubMed ID: 16060655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CeVO
    Singh N; Mugesh G
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7797-7801. PubMed ID: 30950157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Respiratory conservation of energy with dioxygen: cytochrome C oxidase.
    Yoshikawa S; Shimada A; Shinzawa-Itoh K
    Met Ions Life Sci; 2015; 15():89-130. PubMed ID: 25707467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox-dependent interactions between reduced/oxidized cytochrome c and cytochrome c oxidase evaluated by in-situ electrochemical surface plasmon resonance.
    Hou Y; An J; Deng C; Chen S; Xiang J
    Anal Bioanal Chem; 2016 Jul; 408(18):4935-41. PubMed ID: 27215638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular cloning and expression analysis of cytochrome c oxidase subunit II from Sitophilus zeamais.
    Hou CL; Wang JB; Wu H; Liu JY; Ma ZQ; Feng JT; Zhang X
    Biochem Biophys Res Commun; 2016 Sep; 478(4):1660-6. PubMed ID: 27614312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discrete Ligand Binding and Electron Transfer Properties of ba
    Koutsoupakis C; Soulimane T; Varotsis C
    Acc Chem Res; 2019 May; 52(5):1380-1390. PubMed ID: 31021078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results.
    Blomberg MRA; Ädelroth P
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):884-894. PubMed ID: 28801051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mimicking a Natural Enzyme System: Cytochrome c Oxidase-Like Activity of Cu
    Chen M; Wang Z; Shu J; Jiang X; Wang W; Shi ZH; Lin YW
    Inorg Chem; 2017 Aug; 56(16):9400-9403. PubMed ID: 28753305
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox proteins as electron acceptors from chlorophyll triplet state in lipid bilayer vesicles: kinetics of reduction of membrane reconstituted cytochrome c oxidase mediated by 2,5-di-t-butyl benzoquinone and cytochrome c.
    Chamupathi VG; Moezzi DM; Tollin G
    Photochem Photobiol; 1990 Oct; 52(4):883-91. PubMed ID: 1965230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of the redox-dependent modulation of structure and dynamics in human cytochrome c.
    Imai M; Saio T; Kumeta H; Uchida T; Inagaki F; Ishimori K
    Biochem Biophys Res Commun; 2016 Jan; 469(4):978-84. PubMed ID: 26718409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane-associated cytochrome cy of Rhodobacter capsulatus is an electron carrier from the cytochrome bc1 complex to the cytochrome c oxidase during respiration.
    Hochkoeppler A; Jenney FE; Lang SE; Zannoni D; Daldal F
    J Bacteriol; 1995 Feb; 177(3):608-13. PubMed ID: 7836293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron transfer from cytochrome c to 8-azido-ATP-modified cytochrome c oxidase.
    Lin J; Wu S; Chan SI
    Biochemistry; 1995 May; 34(19):6335-43. PubMed ID: 7756261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interheme electron tunneling in cytochrome c oxidase.
    Kaila VR; Johansson MP; Sundholm D; Wikström M
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21470-5. PubMed ID: 21106766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.