These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32250621)

  • 1. On the Thermal Stability of O
    López-Chávez E; Pérez-Hernández G; Aparicio F; Alas SJ
    J Chem Inf Model; 2020 Apr; 60(4):2138-2154. PubMed ID: 32250621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperthermostable protein structure maintained by intra and inter-helix ion-pairs in archaeal O6-methylguanine-DNA methyltransferase.
    Hashimoto H; Inoue T; Nishioka M; Fujiwara S; Takagi M; Imanaka T; Kai Y
    J Mol Biol; 1999 Sep; 292(3):707-16. PubMed ID: 10497033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analyses of the conformational stability of a hyperthermophilic protein and its mesophilic counterpart.
    Shiraki K; Nishikori S; Fujiwara S; Hashimoto H; Kai Y; Takagi M; Imanaka T
    Eur J Biochem; 2001 Aug; 268(15):4144-50. PubMed ID: 11488906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The O6-methylguanine-DNA methyltransferase from the hyperthermophilic archaeon Pyrococcus sp. KOD1: a thermostable repair enzyme.
    Leclere MM; Nishioka M; Yuasa T; Fujiwara S; Takagi M; Imanaka T
    Mol Gen Genet; 1998 Apr; 258(1-2):69-77. PubMed ID: 9613574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallization and preliminary X-ray crystallographic analysis of archaeal O6-methylguanine-DNA methyltransferase.
    Hashimoto H; Nishioka M; Inoue T; Fujiwara S; Takagi M; Imanaka T; Kai Y
    Acta Crystallogr D Biol Crystallogr; 1998 Nov; 54(Pt 6 Pt 2):1395-6. PubMed ID: 10089516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium and kinetic stability of a hyperthermophilic protein, O6-methylguanine-DNA methyltransferase under various extreme conditions.
    Nishikori S; Shiraki K; Okanojo M; Imanaka T; Takagi M
    J Biochem; 2004 Oct; 136(4):503-8. PubMed ID: 15625320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of a hyperthermophilic and a mesophilic protein L30e.
    Lee KJ
    J Chem Inf Model; 2012 Jan; 52(1):7-15. PubMed ID: 22168407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations.
    Du X; Sang P; Xia YL; Li Y; Liang J; Ai SM; Ji XL; Fu YX; Liu SQ
    J Biomol Struct Dyn; 2017 May; 35(7):1500-1517. PubMed ID: 27485684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics perspective on the protein thermal stability: a case study using SAICAR synthetase.
    Manjunath K; Sekar K
    J Chem Inf Model; 2013 Sep; 53(9):2448-61. PubMed ID: 23962324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pk-cdcA encodes a CDC48/VCP homolog in the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1: transcriptional and enzymatic characterization.
    Jeon SJ; Fujiwara S; Takagi M; Imanaka T
    Mol Gen Genet; 1999 Oct; 262(3):559-67. PubMed ID: 10589845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin.
    Lazaridis T; Lee I; Karplus M
    Protein Sci; 1997 Dec; 6(12):2589-605. PubMed ID: 9416608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Study of Novel Natural Inhibitors Targeting O
    Yang L; Li W; Zhao Y; Zhong S; Wang X; Jiang S; Cheng Y; Xu H; Zhao G
    World Neurosurg; 2019 Oct; 130():e294-e306. PubMed ID: 31203065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence of a structurally novel type ribulose-bisphosphate carboxylase/oxygenase in the hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1.
    Ezaki S; Maeda N; Kishimoto T; Atomi H; Imanaka T
    J Biol Chem; 1999 Feb; 274(8):5078-82. PubMed ID: 9988755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics Simulations of HPr Proteins from a Thermophilic and a Mesophilic Organism: A Comparative Thermal Study.
    Gómez-Flores AK; López-Pérez E; Alas-Guardado SJ
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalyzing "hot" reactions: enzymes from hyperthermophilic Archaea.
    Imanaka T; Atomi H
    Chem Rec; 2002; 2(3):149-63. PubMed ID: 12112867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribulose bisphosphate carboxylase/oxygenase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 is composed solely of large subunits and forms a pentagonal structure.
    Maeda N; Kitano K; Fukui T; Ezaki S; Atomi H; Miki K; Imanaka T
    J Mol Biol; 1999 Oct; 293(1):57-66. PubMed ID: 10512715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of DNA polymerase from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1.
    Hashimoto H; Nishioka M; Fujiwara S; Takagi M; Imanaka T; Inoue T; Kai Y
    J Mol Biol; 2001 Feb; 306(3):469-77. PubMed ID: 11178906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding Thermostability Factors of Barley Limit Dextrinase by Molecular Dynamics Simulations.
    Du J; Dong J; Du S; Zhang K; Yu J; Hu S; Yin H
    Front Mol Biosci; 2020; 7():51. PubMed ID: 32478090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational effects on O(6)-methylguanine-DNA methyltransferase from hyperthermophile: contribution of ion-pair network to protein thermostability.
    Nishikori S; Shiraki K; Yokota K; Izumikawa N; Fujiwara S; Hashimoto H; Imanaka T; Takagi M
    J Biochem; 2004 Apr; 135(4):525-32. PubMed ID: 15115778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative molecular dynamics simulation studies for determining factors contributing to the thermostability of chemotaxis protein "CheY".
    Paul M; Hazra M; Barman A; Hazra S
    J Biomol Struct Dyn; 2014; 32(6):928-49. PubMed ID: 23796004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.