BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32250627)

  • 21. Label-Free Bottom-Up Proteomic Workflow for Simultaneously Assessing the Target Specificity of Covalent Drug Candidates and Their Off-Target Reactivity to Selected Proteins.
    Yang Y; Shu YZ; Humphreys WG
    Chem Res Toxicol; 2016 Jan; 29(1):109-16. PubMed ID: 26675335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances in covalent kinase inhibitors.
    Abdeldayem A; Raouf YS; Constantinescu SN; Moriggl R; Gunning PT
    Chem Soc Rev; 2020 May; 49(9):2617-2687. PubMed ID: 32227030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Limitations of Ligand-Only Approaches for Predicting the Reactivity of Covalent Inhibitors.
    Voice A; Tresadern G; van Vlijmen H; Mulholland A
    J Chem Inf Model; 2019 Oct; 59(10):4220-4227. PubMed ID: 31498988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward Atomistic Modeling of Irreversible Covalent Inhibitor Binding Kinetics.
    Yu HS; Gao C; Lupyan D; Wu Y; Kimura T; Wu C; Jacobson L; Harder E; Abel R; Wang L
    J Chem Inf Model; 2019 Sep; 59(9):3955-3967. PubMed ID: 31425654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversible Dual-Covalent Molecular Locking of the 14-3-3/ERRγ Protein-Protein Interaction as a Molecular Glue Drug Discovery Approach.
    Somsen BA; Schellekens RJC; Verhoef CJA; Arkin MR; Ottmann C; Cossar PJ; Brunsveld L
    J Am Chem Soc; 2023 Mar; 145(12):6741-6752. PubMed ID: 36926879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent progress in covalent warheads for in vivo targeting of endogenous proteins.
    Shindo N; Ojida A
    Bioorg Med Chem; 2021 Oct; 47():116386. PubMed ID: 34509863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic Exploration of Privileged Warheads for Covalent Kinase Drug Discovery.
    Zhao Z; Bourne PE
    Pharmaceuticals (Basel); 2022 Oct; 15(11):. PubMed ID: 36355497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitriles: an attractive approach to the development of covalent inhibitors.
    Bonatto V; Lameiro RF; Rocho FR; Lameira J; Leitão A; Montanari CA
    RSC Med Chem; 2023 Feb; 14(2):201-217. PubMed ID: 36846367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An electrophilic warhead library for mapping the reactivity and accessibility of tractable cysteines in protein kinases.
    Petri L; Egyed A; Bajusz D; Imre T; Hetényi A; Martinek T; Ábrányi-Balogh P; Keserű GM
    Eur J Med Chem; 2020 Dec; 207():112836. PubMed ID: 32971426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model-based Target Pharmacology Assessment (mTPA): An Approach Using PBPK/PD Modeling and Machine Learning to Design Medicinal Chemistry and DMPK Strategies in Early Drug Discovery.
    Chen EP; Bondi RW; Michalski PJ
    J Med Chem; 2021 Mar; 64(6):3185-3196. PubMed ID: 33719432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new method for filtering of reactive "warheads" of transition-state analog protease inhibitors.
    Traube T; Shokhen M; Albeck A
    Eur J Med Chem; 2014 Apr; 77():134-8. PubMed ID: 24631732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Covalent drug discovery exploiting the new warheads].
    Ojida A
    Nihon Yakurigaku Zasshi; 2022; 157(5):361-365. PubMed ID: 36047154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Covalent Versus Non-covalent Enzyme Inhibition: Which Route Should We Take? A Justification of the Good and Bad from Molecular Modelling Perspective.
    Aljoundi A; Bjij I; El Rashedy A; Soliman MES
    Protein J; 2020 Apr; 39(2):97-105. PubMed ID: 32072438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery.
    McAulay K; Bilsland A; Bon M
    Pharmaceuticals (Basel); 2022 Nov; 15(11):. PubMed ID: 36355538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics.
    Koromina M; Pandi MT; Patrinos GP
    OMICS; 2019 Nov; 23(11):539-548. PubMed ID: 31651216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Next Era: Deep Learning in Pharmaceutical Research.
    Ekins S
    Pharm Res; 2016 Nov; 33(11):2594-603. PubMed ID: 27599991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Covalent inhibitors of GAPDH: From unspecific warheads to selective compounds.
    Galbiati A; Zana A; Conti P
    Eur J Med Chem; 2020 Dec; 207():112740. PubMed ID: 32898762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Survey of Machine Learning Techniques in Drug Discovery.
    Stephenson N; Shane E; Chase J; Rowland J; Ries D; Justice N; Zhang J; Chan L; Cao R
    Curr Drug Metab; 2019; 20(3):185-193. PubMed ID: 30124147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining Cloud-Based Free-Energy Calculations, Synthetically Aware Enumerations, and Goal-Directed Generative Machine Learning for Rapid Large-Scale Chemical Exploration and Optimization.
    Ghanakota P; Bos PH; Konze KD; Staker J; Marques G; Marshall K; Leswing K; Abel R; Bhat S
    J Chem Inf Model; 2020 Sep; 60(9):4311-4325. PubMed ID: 32484669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep Learning Total Energies and Orbital Energies of Large Organic Molecules Using Hybridization of Molecular Fingerprints.
    Rahaman O; Gagliardi A
    J Chem Inf Model; 2020 Dec; 60(12):5971-5983. PubMed ID: 33118351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.