BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32250844)

  • 1. Evaluation of PHITS for microdosimetry in BNCT to support radiobiological research.
    Hu N; Tanaka H; Takata T; Endo S; Masunaga S; Suzuki M; Sakurai Y
    Appl Radiat Isot; 2020 Jul; 161():109148. PubMed ID: 32250844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microdosimetric quantities of an accelerator-based neutron source used for boron neutron capture therapy measured using a gas-filled proportional counter.
    Hu N; Tanaka H; Takata T; Okazaki K; Uchida R; Sakurai Y
    J Radiat Res; 2020 Mar; 61(2):214-220. PubMed ID: 32030430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Out-of-field dosimetry using a validated PHITS model and computational phantom in clinical BNCT.
    Kakino R; Hu N; Tanaka H; Takeno S; Aihara T; Nihei K; Ono K
    Med Phys; 2024 Feb; 51(2):1351-1363. PubMed ID: 38153111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model.
    Horiguchi H; Sato T; Kumada H; Yamamoto T; Sakae T
    J Radiat Res; 2015 Mar; 56(2):382-90. PubMed ID: 25428243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Model for Estimating Dose-Rate Effects on Cell-Killing of Human Melanoma after Boron Neutron Capture Therapy.
    Matsuya Y; Fukunaga H; Omura M; Date H
    Cells; 2020 Apr; 9(5):. PubMed ID: 32365916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility study on the use of 3D silicon microdosimeter detectors for microdosimetric analysis in boron neutron capture therapy.
    Hu N; Uchida R; Tran LT; Rosenfeld A; Sakurai Y
    Appl Radiat Isot; 2018 Oct; 140():109-114. PubMed ID: 30015038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data.
    Zamenhof R; Redmond E; Solares G; Katz D; Riley K; Kiger S; Harling O
    Int J Radiat Oncol Biol Phys; 1996 May; 35(2):383-97. PubMed ID: 8635948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo modelling of the influence of boron microdistribution on BNCT microdosimetry.
    Hugtenburg RP; Baker AE; Green S
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S168-70. PubMed ID: 19394241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DEVELOPMENT OF A MULTIMODAL MONTE CARLO BASED TREATMENT PLANNING SYSTEM.
    Kumada H; Takada K; Sakurai Y; Suzuki M; Takata T; Sakurai H; Matsumura A; Sakae T
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):286-290. PubMed ID: 29087501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microdosimetric evaluation of the neutron field for BNCT at Kyoto University reactor by using the PHITS code.
    Baba H; Onizuka Y; Nakao M; Fukahori M; Sato T; Sakurai Y; Tanaka H; Endo S
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):528-32. PubMed ID: 21199830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.
    Nguyen TT; Kajimoto T; Tanaka K; Nguyen CC; Endo S
    Med Phys; 2016 Nov; 43(11):6049. PubMed ID: 27806584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dosimetry system for boron neutron capture therapy based on the dual counter microdosimetric technique.
    Kota C; Maughan RL
    Bull Cancer Radiother; 1996; 83 Suppl():173s-5s. PubMed ID: 8949773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdosimetry of neutron field for boron neutron capture therapy at Kyoto university reactor.
    Endo S; Onizuka Y; Ishikawa M; Takada M; Sakurai Y; Kobayashi T; Tanaka K; Hoshi M; Shizuma K
    Radiat Prot Dosimetry; 2004; 110(1-4):641-4. PubMed ID: 15353723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of radiation microdosimetry for accelerator-based boron neutron capture therapy: a radiobiological perspective.
    Fukunaga H; Matsuya Y; Tokuuye K; Omura M
    Br J Radiol; 2020 Jul; 93(1111):20200311. PubMed ID: 32374629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microdosimetric spectra of the THOR neutron beam for boron neutron capture therapy.
    Hsu FY; Tung CJ; Watt DE
    Radiat Prot Dosimetry; 2003; 104(2):121-6. PubMed ID: 12918789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BNCT microdosimetry at the tapiro reactor thermal column.
    De Nardo L; Seravalli E; Rosi G; Esposito J; Colautti P; Conte V; Tornielli G
    Radiat Prot Dosimetry; 2004; 110(1-4):579-86. PubMed ID: 15353712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microdosimetry study of THOR BNCT beam using tissue equivalent proportional counter.
    Hsu FY; Hsiao HW; Tung CJ; Liu HM; Chou FI
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S175-8. PubMed ID: 19447042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microdosimetric investigation of the spectra from YAYOI by use of the Monte Carlo code PHITS.
    Nakao M; Baba H; Oishi A; Onizuka Y
    Radiol Phys Technol; 2010 Jul; 3(2):144-50. PubMed ID: 20821088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty in tissue equivalent proportional counter assessments of microdosimetry and RBE estimates in carbon radiotherapy.
    Hartzell S; Guan F; Taylor P; Peterson C; Taddei P; Kry S
    Phys Med Biol; 2021 Jul; 66(15):. PubMed ID: 34252894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.