These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
596 related articles for article (PubMed ID: 32250918)
41. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation. Wang X; Gaustad G; Babbitt CW Waste Manag; 2016 May; 51():204-213. PubMed ID: 26577459 [TBL] [Abstract][Full Text] [Related]
42. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Fan E; Li L; Wang Z; Lin J; Huang Y; Yao Y; Chen R; Wu F Chem Rev; 2020 Jul; 120(14):7020-7063. PubMed ID: 31990183 [TBL] [Abstract][Full Text] [Related]
43. Recovery of industrial valuable metals from household battery waste. Ebin B; Petranikova M; Steenari BM; Ekberg C Waste Manag Res; 2019 Feb; 37(2):168-175. PubMed ID: 30632933 [TBL] [Abstract][Full Text] [Related]
44. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process. Wang MM; Zhang CC; Zhang FS Waste Manag; 2017 Sep; 67():232-239. PubMed ID: 28502601 [TBL] [Abstract][Full Text] [Related]
45. A review on the recycling of spent lithium iron phosphate batteries. Zhao T; Li W; Traversy M; Choi Y; Ghahreman A; Zhao Z; Zhang C; Zhao W; Song Y J Environ Manage; 2024 Feb; 351():119670. PubMed ID: 38039588 [TBL] [Abstract][Full Text] [Related]
46. Uncovering the in-use metal stocks and implied recycling potential in electric vehicle batteries considering cascaded use: a case study of China. Yang H; Song X; Zhang X; Lu B; Yang D; Li B Environ Sci Pollut Res Int; 2021 Sep; 28(33):45867-45878. PubMed ID: 33884548 [TBL] [Abstract][Full Text] [Related]
47. Unveiling the recycling characteristics and trends of spent lithium-ion battery: a scientometric study. Zhao S; Quan J; Wang T; Song D; Huang J; He W; Li G Environ Sci Pollut Res Int; 2022 Feb; 29(7):9448-9461. PubMed ID: 34855174 [TBL] [Abstract][Full Text] [Related]
48. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite. Vieceli N; Nogueira CA; Guimarães C; Pereira MFC; Durão FO; Margarido F Waste Manag; 2018 Jan; 71():350-361. PubMed ID: 29030120 [TBL] [Abstract][Full Text] [Related]
49. Extraction of Li and Co from industrially produced Li-ion battery waste - Using the reductive power of waste itself. Peng C; Liu F; Aji AT; Wilson BP; Lundström M Waste Manag; 2019 Jul; 95():604-611. PubMed ID: 31351647 [TBL] [Abstract][Full Text] [Related]
50. Coupling redox flow desalination with lithium recovery from spent lithium-ion batteries. Shan W; Zi Y; Chen H; Li M; Luo M; Oo TZ; Lwin NW; Aung SH; Tang D; Ying G; Chen F; Chen Y Water Res; 2024 Mar; 252():121205. PubMed ID: 38301527 [TBL] [Abstract][Full Text] [Related]
51. On the influence of second use, future battery technologies, and battery lifetime on the maximum recycled content of future electric vehicle batteries in Europe. Abdelbaky M; Peeters JR; Dewulf W Waste Manag; 2021 Apr; 125():1-9. PubMed ID: 33667978 [TBL] [Abstract][Full Text] [Related]
52. A critical review of the circular economy for lithium-ion batteries and photovoltaic modules - status, challenges, and opportunities. Heath GA; Ravikumar D; Hansen B; Kupets E J Air Waste Manag Assoc; 2022 Jun; 72(6):478-539. PubMed ID: 35687330 [TBL] [Abstract][Full Text] [Related]
53. Recovery of lithium and cobalt from lithium cobalt oxide and lithium nickel manganese cobalt oxide batteries using supercritical water. Barros TV; Notario VA; de Oliveira JA; Bispo DF; Freitas LDS; Jegatheesan V; Cardozo-Filho L Environ Pollut; 2024 Oct; 359():124570. PubMed ID: 39029860 [TBL] [Abstract][Full Text] [Related]
54. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them. Zhang W; Xu C; He W; Li G; Huang J Waste Manag Res; 2018 Feb; 36(2):99-112. PubMed ID: 29241402 [TBL] [Abstract][Full Text] [Related]
55. Comparative life cycle analysis of critical materials recovery from spent Li-ion batteries. Mousavinezhad S; Kadivar S; Vahidi E J Environ Manage; 2023 Aug; 339():117887. PubMed ID: 37031596 [TBL] [Abstract][Full Text] [Related]
56. Research on Spent LiFePO Zhu L; Chen M Int J Environ Res Public Health; 2020 Nov; 17(23):. PubMed ID: 33261047 [TBL] [Abstract][Full Text] [Related]
57. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries. Xia X; Li P Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672 [TBL] [Abstract][Full Text] [Related]
58. Comprehensive review and comparison on pretreatment of spent lithium-ion battery. Gao T; Dai T; Fan N; Han Z; Gao X J Environ Manage; 2024 Jul; 363():121314. PubMed ID: 38843731 [TBL] [Abstract][Full Text] [Related]
59. Towards Recycling of LLZO Solid Electrolyte Exemplarily Performed on LFP/LLZO/LTO Cells. Ali Nowroozi M; Iqbal Waidha A; Jacob M; van Aken PA; Predel F; Ensinger W; Clemens O ChemistryOpen; 2022 Mar; 11(3):e202100274. PubMed ID: 35199490 [TBL] [Abstract][Full Text] [Related]