BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 32251011)

  • 1. Meta-Analysis on the Identification of Linguistic and Emotional Prosody in Cochlear Implant Users and Vocoder Simulations.
    Everhardt MK; Sarampalis A; Coler M; Başkent D; Lowie W
    Ear Hear; 2020; 41(5):1092-1102. PubMed ID: 32251011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A meta-analysis of expressive prosody in cochlear implant users.
    Hawthorne K
    J Commun Disord; 2024; 110():106431. PubMed ID: 38781923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighting of Prosodic and Lexical-Semantic Cues for Emotion Identification in Spectrally Degraded Speech and With Cochlear Implants.
    Richter ME; Chatterjee M
    Ear Hear; 2021 Nov-Dec 01; 42(6):1727-1740. PubMed ID: 34294630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Music Is More Enjoyable With Two Ears, Even If One of Them Receives a Degraded Signal Provided By a Cochlear Implant.
    Landsberger DM; Vermeire K; Stupak N; Lavender A; Neukam J; Van de Heyning P; Svirsky MA
    Ear Hear; 2020; 41(3):476-490. PubMed ID: 31469701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners.
    Jones H; Kan A; Litovsky RY
    Trends Hear; 2014 Nov; 18():. PubMed ID: 25385244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binaural Optimization of Cochlear Implants: Discarding Frequency Content Without Sacrificing Head-Shadow Benefit.
    Sheffield SW; Goupell MJ; Spencer NJ; Stakhovskaya OA; Bernstein JGW
    Ear Hear; 2020; 41(3):576-590. PubMed ID: 31436754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using prosody to infer discourse prominence in cochlear-implant users and normal-hearing listeners.
    Huang YT; Newman RS; Catalano A; Goupell MJ
    Cognition; 2017 Sep; 166():184-200. PubMed ID: 28578222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictors of Emotional Prosody Identification by School-Age Children With Cochlear Implants and Their Peers With Normal Hearing.
    Chatterjee M; Gajre S; Kulkarni AM; Barrett KC; Limb CJ
    Ear Hear; 2024 Mar-Apr 01; 45(2):411-424. PubMed ID: 37811966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. More Than Words: the Relative Roles of Prosody and Semantics in the Perception of Emotions in Spoken Language by Postlingual Cochlear Implant Users.
    Taitelbaum-Swead R; Icht M; Ben-David BM
    Ear Hear; 2022 Jul-Aug 01; 43(4):1378-1389. PubMed ID: 35030551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Residual Acoustic Hearing and Adaptation to Uncertainty on Speech Perception in Cochlear Implant Users: Evidence From Eye-Tracking.
    McMurray B; Farris-Trimble A; Seedorff M; Rigler H
    Ear Hear; 2016; 37(1):e37-51. PubMed ID: 26317298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceptual Discrimination of Speaking Style Under Cochlear Implant Simulation.
    Tamati TN; Janse E; Başkent D
    Ear Hear; 2019; 40(1):63-76. PubMed ID: 29742545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Top-Down Processes in Simulated Electric-Acoustic Hearing: The Effect of Linguistic Context on Bimodal Benefit for Temporally Interrupted Speech.
    Oh SH; Donaldson GS; Kong YY
    Ear Hear; 2016; 37(5):582-92. PubMed ID: 27007220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forward-Masked Frequency Selectivity Improvements in Simulated and Actual Cochlear Implant Users Using a Preprocessing Algorithm.
    Langner F; Jürgens T
    Trends Hear; 2016 Sep; 20():. PubMed ID: 27604785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Interaural Mismatches on Contralateral Unmasking With Single-Sided Vocoders.
    Wess JM; Brungart DS; Bernstein JGW
    Ear Hear; 2017; 38(3):374-386. PubMed ID: 28002083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cooperating and conflicting cues on speech intonation recognition by cochlear implant users and normal hearing listeners.
    Peng SC; Lu N; Chatterjee M
    Audiol Neurootol; 2009; 14(5):327-37. PubMed ID: 19372651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-Related Changes in Voice Emotion Recognition by Postlingually Deafened Listeners With Cochlear Implants.
    Cannon SA; Chatterjee M
    Ear Hear; 2022; 43(2):323-334. PubMed ID: 34406157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of semantic context and talker variability in speech perception of cochlear-implant users and normal-hearing listeners.
    O'Neill ER; Parke MN; Kreft HA; Oxenham AJ
    J Acoust Soc Am; 2021 Feb; 149(2):1224. PubMed ID: 33639827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the Quality of Low-Frequency Acoustic Hearing: Implications for Combined Electroacoustic Stimulation With Cochlear Implants.
    Spitzer ER; Landsberger DM; Friedmann DR
    Ear Hear; 2021; 42(2):475-486. PubMed ID: 32976249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Memory Span for Spoken Digits in Adults With Cochlear Implants or Typical Hearing: Effects of Age and Identification Ability.
    Cleary M; Wilkinson T; Wilson L; Goupell MJ
    J Speech Lang Hear Res; 2018 Aug; 61(8):2099-2114. PubMed ID: 30073267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.