These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32251394)

  • 1. Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ.
    Wu T; Lyu R; You Q; He C
    Nat Methods; 2020 May; 17(5):515-523. PubMed ID: 32251394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KAS-seq: genome-wide sequencing of single-stranded DNA by N
    Lyu R; Wu T; Zhu AC; West-Szymanski DC; Weng X; Chen M; He C
    Nat Protoc; 2022 Feb; 17(2):402-420. PubMed ID: 35013616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring transient global transcriptional changes induced by ascorbic acid revealed via atKAS-seq profiling.
    Liu X; He W; Hu L
    Funct Integr Genomics; 2024 Mar; 24(2):66. PubMed ID: 38526630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of cis-regulatory elements in transcription with KAS-ATAC-seq.
    Lyu R; Gao Y; Wu T; Ye C; Wang P; He C
    Nat Commun; 2024 Aug; 15(1):6852. PubMed ID: 39127768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KAS-Analyzer: a novel computational framework for exploring KAS-seq data.
    Lyu R; Wu T; Park G; He YY; Chen M; He C
    Bioinform Adv; 2023; 3(1):vbad121. PubMed ID: 37745002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq.
    Vanhille L; Griffon A; Maqbool MA; Zacarias-Cabeza J; Dao LT; Fernandez N; Ballester B; Andrau JC; Spicuglia S
    Nat Commun; 2015 Apr; 6():6905. PubMed ID: 25872643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KAS-seq profiling captures transcription dynamics during oocyte maturation.
    An H; Wang X; Li J; Sun H; Zhu S; Ge J; Han L; Shen B; Wang Q
    J Ovarian Res; 2024 Jan; 17(1):23. PubMed ID: 38267939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Keth-seq for transcriptome-wide RNA structure mapping.
    Weng X; Gong J; Chen Y; Wu T; Wang F; Yang S; Yuan Y; Luo G; Chen K; Hu L; Ma H; Wang P; Zhang QC; Zhou X; He C
    Nat Chem Biol; 2020 May; 16(5):489-492. PubMed ID: 32015521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Illuminating Enhancer Transcription at Nucleotide Resolution with Native Elongating Transcript Sequencing (NET-Seq).
    Jasnovidova O; Arnold M; Mayer A
    Methods Mol Biol; 2021; 2351():41-65. PubMed ID: 34382183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STARR-seq - principles and applications.
    Muerdter F; Boryń ŁM; Arnold CD
    Genomics; 2015 Sep; 106(3):145-150. PubMed ID: 26072434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principle and application of self-transcribing active regulatory region sequencing in enhancer discovery research.
    Wang JL; Li Q; Zhan TZ
    Yi Chuan; 2024 Aug; 46(8):589-602. PubMed ID: 39140141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell nascent RNA sequencing unveils coordinated global transcription.
    Mahat DB; Tippens ND; Martin-Rufino JD; Waterton SK; Fu J; Blatt SE; Sharp PA
    Nature; 2024 Jul; 631(8019):216-223. PubMed ID: 38839954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. spKAS-seq reveals R-loop dynamics using low-input materials by detecting single-stranded DNA with strand specificity.
    Wu T; Lyu R; He C
    Sci Adv; 2022 Dec; 8(48):eabq2166. PubMed ID: 36449625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Run-on Sequencing (GRO-Seq).
    Tzerpos P; Daniel B; Nagy L
    Methods Mol Biol; 2021; 2351():25-39. PubMed ID: 34382182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile single-stranded DNA sequencing of human plasma DNA via thermostable group II intron reverse transcriptase template switching.
    Wu DC; Lambowitz AM
    Sci Rep; 2017 Aug; 7(1):8421. PubMed ID: 28827600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding enhancers using massively parallel reporter assays.
    Inoue F; Ahituv N
    Genomics; 2015 Sep; 106(3):159-164. PubMed ID: 26072433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Approaches for Mining GRO-Seq Data to Identify and Characterize Active Enhancers.
    Nagari A; Murakami S; Malladi VS; Kraus WL
    Methods Mol Biol; 2017; 1468():121-38. PubMed ID: 27662874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GRID-seq reveals the global RNA-chromatin interactome.
    Li X; Zhou B; Chen L; Gou LT; Li H; Fu XD
    Nat Biotechnol; 2017 Oct; 35(10):940-950. PubMed ID: 28922346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution.
    Hu J; Adar S; Selby CP; Lieb JD; Sancar A
    Genes Dev; 2015 May; 29(9):948-60. PubMed ID: 25934506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide assessment of sequence-intrinsic enhancer responsiveness at single-base-pair resolution.
    Arnold CD; Zabidi MA; Pagani M; Rath M; Schernhuber K; Kazmar T; Stark A
    Nat Biotechnol; 2017 Feb; 35(2):136-144. PubMed ID: 28024147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.