BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32251448)

  • 1. 3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries.
    Lee CT; Laughlin JG; Angliviel de La Beaumelle N; Amaro RE; McCammon JA; Ramamoorthi R; Holst M; Rangamani P
    PLoS Comput Biol; 2020 Apr; 16(4):e1007756. PubMed ID: 32251448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesh generation from 3D multi-material images.
    Boltcheva D; Yvinec M; Boissonnat JD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):283-90. PubMed ID: 20426123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Open-Source Mesh Generation Platform for Biophysical Modeling Using Realistic Cellular Geometries.
    Lee CT; Laughlin JG; Moody JB; Amaro RE; McCammon JA; Holst M; Rangamani P
    Biophys J; 2020 Mar; 118(5):1003-1008. PubMed ID: 32032503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion MRI simulation of realistic neurons with SpinDoctor and the Neuron Module.
    Fang C; Nguyen VD; Wassermann D; Li JR
    Neuroimage; 2020 Nov; 222():117198. PubMed ID: 32730957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated generation of tissue-specific three-dimensional finite element meshes containing ellipsoidal cellular inclusions.
    Bennetts CJ; Sibole S; Erdemir A
    Comput Methods Biomech Biomed Engin; 2015; 18(12):1293-304. PubMed ID: 24708340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries.
    Drawert B; Engblom S; Hellander A
    BMC Syst Biol; 2012 Jun; 6():76. PubMed ID: 22727185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-fidelity meshes from tissue samples for diffusion MRI simulations.
    Panagiotaki E; Hall MG; Zhang H; Siow B; Lythgoe MF; Alexander DC
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):404-11. PubMed ID: 20879341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analysis of the mechanical parameters used for finite element compression of a high-resolution 3D breast phantom.
    Hsu CM; Palmeri ML; Segars WP; Veress AI; Dobbins JT
    Med Phys; 2011 Oct; 38(10):5756-70. PubMed ID: 21992390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning Whole Heart Mesh Generation From Patient Images for Computational Simulations.
    Kong F; Shadden SC
    IEEE Trans Med Imaging; 2023 Feb; 42(2):533-545. PubMed ID: 36327186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating smooth surface meshes from multi-region medical images.
    d'Otreppe V; Boman R; Ponthot JP
    Int J Numer Method Biomed Eng; 2012; 28(6-7):642-60. PubMed ID: 25364843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volumetric analysis and mesh generation of real and artificial microstructural geometries.
    Walters DJ; Luscher DJ; Yeager JD
    MethodsX; 2020; 7():100856. PubMed ID: 32337165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur.
    Ramos A; Simões JA
    Med Eng Phys; 2006 Nov; 28(9):916-24. PubMed ID: 16464628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New software developments for quality mesh generation and optimization from biomedical imaging data.
    Yu Z; Wang J; Gao Z; Xu M; Hoshijima M
    Comput Methods Programs Biomed; 2014; 113(1):226-40. PubMed ID: 24252469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of different modeling strategies for the periodontal ligament on finite element simulation results.
    Hohmann A; Kober C; Young P; Dorow C; Geiger M; Boryor A; Sander FM; Sander C; Sander FG
    Am J Orthod Dentofacial Orthop; 2011 Jun; 139(6):775-83. PubMed ID: 21640884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mesh-matching algorithm: an automatic 3D mesh generator for finite element structures.
    Couteau B; Payan Y; Lavallée S
    J Biomech; 2000 Aug; 33(8):1005-9. PubMed ID: 10828331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for rapid production of subject specific finite element meshes for electrical impedance tomography of the human head.
    Vonach M; Marson B; Yun M; Cardoso J; Modat M; Ourselin S; Holder D
    Physiol Meas; 2012 May; 33(5):801-16. PubMed ID: 22531116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polygonal surface processing and mesh generation tools for the numerical simulation of the cardiac function.
    Fedele M; Quarteroni A
    Int J Numer Method Biomed Eng; 2021 Apr; 37(4):e3435. PubMed ID: 33415829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triangulated manifold meshing method preserving molecular surface topology.
    Chen M; Tu B; Lu B
    J Mol Graph Model; 2012 Sep; 38():411-8. PubMed ID: 23117290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-hexahedral structured meshing for image-based computational vascular modeling.
    De Santis G; De Beule M; Van Canneyt K; Segers P; Verdonck P; Verhegghe B
    Med Eng Phys; 2011 Dec; 33(10):1318-25. PubMed ID: 21763174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.