These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 32251448)

  • 21. Ultraliser: a framework for creating multiscale, high-fidelity and geometrically realistic 3D models for in silico neuroscience.
    Abdellah M; Cantero JJG; Guerrero NR; Foni A; Coggan JS; Calì C; Agus M; Zisis E; Keller D; Hadwiger M; Magistretti PJ; Markram H; Schürmann F
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36434788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Template-based finite-element mesh generation from medical images.
    Baghdadi L; Steinman DA; Ladak HM
    Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From medical images to flow computations without user-generated meshes.
    Dillard SI; Mousel JA; Shrestha L; Raghavan ML; Vigmostad SC
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):1057-83. PubMed ID: 24753504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-quality mesh generation for human hip based on ideal element size: methods and evaluation.
    Wang M; Gao J; Wang X
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):212-220. PubMed ID: 29058486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finite element (FE) modeling of the mandible: from geometric model to tetrahedral volumetric mesh.
    Zhao L; Han H; Patel PK; Widera GE; Harris GF
    Stud Health Technol Inform; 2002; 85():593-6. PubMed ID: 15458158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Summary on several key techniques in 3D geological modeling.
    Mei G
    ScientificWorldJournal; 2014; 2014():723832. PubMed ID: 24772029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incisor compliance following operative procedures: a rapid 3-D finite element analysis using micro-CT data.
    Magne P; Tan DT
    J Adhes Dent; 2008 Feb; 10(1):49-56. PubMed ID: 18389736
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-quality conforming hexahedral meshes of patient-specific abdominal aortic aneurysms including their intraluminal thrombi.
    Tarjuelo-Gutierrez J; Rodriguez-Vila B; Pierce DM; Fastl TE; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Holzapfel GA; Gomez EJ
    Med Biol Eng Comput; 2014 Feb; 52(2):159-68. PubMed ID: 24306943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic generation of hexahedral and tetrahedral meshes.
    Zerfass P; Keeve E
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 1():79-82. PubMed ID: 12451778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions.
    Auer M; Gasser TC
    IEEE Trans Med Imaging; 2010 Apr; 29(4):1022-8. PubMed ID: 20335091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metaball skinning of synthetic astroglial morphologies into realistic mesh models for visual analytics and in silico simulations.
    Abdellah M; Foni A; Zisis E; Guerrero NR; Lapere S; Coggan JS; Keller D; Markram H; Schürmann F
    Bioinformatics; 2021 Jul; 37(Suppl_1):i426-i433. PubMed ID: 34252950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The generation of tetrahedral mesh models for neuroanatomical MRI.
    Lederman C; Joshi A; Dinov I; Vese L; Toga A; Van Horn JD
    Neuroimage; 2011 Mar; 55(1):153-64. PubMed ID: 21073968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Smooth surface meshing for automated finite element model generation from 3D image data.
    Boyd SK; Müller R
    J Biomech; 2006; 39(7):1287-95. PubMed ID: 15922348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Realistic forward and inverse model mesh generation for rapid three-dimensional thoracic electrical impedance imaging.
    Zifan A; Liatsis P; Almarzouqi H
    Comput Biol Med; 2019 Apr; 107():97-108. PubMed ID: 30798220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph.
    Mörschel K; Breit M; Queisser G
    Neuroinformatics; 2017 Jul; 15(3):247-269. PubMed ID: 28447297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mesh adaptation for improving elasticity reconstruction using the FEM inverse problem.
    Goksel O; Eskandari H; Salcudean SE
    IEEE Trans Med Imaging; 2013 Feb; 32(2):408-18. PubMed ID: 23192522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cardiovascular and lung mesh generation based on centerlines.
    Marchandise E; Geuzaine C; Remacle JF
    Int J Numer Method Biomed Eng; 2013 Jun; 29(6):665-82. PubMed ID: 23606344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.