These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 32251586)
1. Quasi-Solid-State Electrolyte Synthesized Using a Thiol-Ene Click Chemistry for Rechargeable Lithium Metal Batteries with Enhanced Safety. Park S; Jeong B; Lim DA; Lee CH; Ahn KH; Lee JH; Kim DW ACS Appl Mater Interfaces; 2020 Apr; 12(17):19553-19562. PubMed ID: 32251586 [TBL] [Abstract][Full Text] [Related]
2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
3. Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Cells by Double-Layer Coating of Cathode Materials with Al₂O₃ Nanoparticles and Conductive Polymer. Lee YS; Shin WK; Kannan AG; Koo SM; Kim DW ACS Appl Mater Interfaces; 2015 Jul; 7(25):13944-51. PubMed ID: 26083766 [TBL] [Abstract][Full Text] [Related]
4. Polymer-Ion Interaction Prompted Quasi-Solid Electrolyte for Room-Temperature High-Performance Lithium-Ion Batteries. Liu F; Wang J; Chen W; Yuan M; Wang Q; Ke R; Zhang G; Chang J; Wang C; Deng Y; Wang J; Shao M Adv Mater; 2024 Nov; 36(45):e2409838. PubMed ID: 39268782 [TBL] [Abstract][Full Text] [Related]
5. A Metal-Organic Framework Based Quasi-Solid-State Electrolyte Enabling Continuous Ion Transport for High-Safety and High-Energy-Density Lithium Metal Batteries. Wu Z; Yi Y; Hai F; Tian X; Zheng S; Guo J; Tang W; Hua W; Li M ACS Appl Mater Interfaces; 2023 May; 15(18):22065-22074. PubMed ID: 37122124 [TBL] [Abstract][Full Text] [Related]
6. Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Yao P; Yu H; Ding Z; Liu Y; Lu J; Lavorgna M; Wu J; Liu X Front Chem; 2019; 7():522. PubMed ID: 31440498 [TBL] [Abstract][Full Text] [Related]
7. Ordered and Fast Ion Transport of Quasi-solid-state Electrolyte with Regulated Coordination Strength for Lithium Metal Batteries. Zhang Q; Liu Z; Song X; Bian T; Guo Z; Wu D; Wei J; Wu S; Zhao Y Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202302559. PubMed ID: 37227400 [TBL] [Abstract][Full Text] [Related]
8. A Single-Ion Conducting Borate Network Polymer as a Viable Quasi-Solid Electrolyte for Lithium Metal Batteries. Shin DM; Bachman JE; Taylor MK; Kamcev J; Park JG; Ziebel ME; Velasquez E; Jarenwattananon NN; Sethi GK; Cui Y; Long JR Adv Mater; 2020 Mar; 32(10):e1905771. PubMed ID: 31985110 [TBL] [Abstract][Full Text] [Related]
10. A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety. Yi J; Zhou H ChemSusChem; 2016 Sep; 9(17):2391-6. PubMed ID: 27487523 [TBL] [Abstract][Full Text] [Related]
11. Quasi-solid electrolyte developed on hierarchical rambutan-like γ-AlOOH microspheres with high ionic conductivity for lithium ion batteries. Gao M; Wu X; Yi S; Sun S; Yu C; Yan D; Yang HY; Zhao H; Bai Y Nanoscale; 2021 Aug; 13(31):13310-13317. PubMed ID: 34477737 [TBL] [Abstract][Full Text] [Related]
12. Long-cycling and High-voltage Solid State Lithium Metal Batteries Enabled by Fluorinated and Crosslinked Polyether Electrolytes. Zhu J; Zhao R; Zhang J; Song X; Liu J; Xu N; Zhang H; Wan X; Ji X; Ma Y; Li C; Chen Y Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202400303. PubMed ID: 38444055 [TBL] [Abstract][Full Text] [Related]
13. Thermoplastic Polyurethane Elastomer-Based Gel Polymer Electrolytes for Sodium-Metal Cells with Enhanced Cycling Performance. Park MS; Woo HS; Heo JM; Kim JM; Thangavel R; Lee YS; Kim DW ChemSusChem; 2019 Oct; 12(20):4645-4654. PubMed ID: 31419074 [TBL] [Abstract][Full Text] [Related]
14. Ultraviolet-Cured Semi-Interpenetrating Network Polymer Electrolytes for High-Performance Quasi-Solid-State Lithium Metal Batteries. Xie HX; Fu QG; Li Z; Chen S; Wu JM; Wei L; Guo X Chemistry; 2021 May; 27(28):7773-7780. PubMed ID: 33780578 [TBL] [Abstract][Full Text] [Related]
15. High-Charge Density Polymerized Ionic Networks Boosting High Ionic Conductivity as Quasi-Solid Electrolytes for High-Voltage Batteries. Tian X; Yi Y; Yang P; Liu P; Qu L; Li M; Hu YS; Yang B ACS Appl Mater Interfaces; 2019 Jan; 11(4):4001-4010. PubMed ID: 30608130 [TBL] [Abstract][Full Text] [Related]
16. Quasi-Solid-State Rechargeable Li-O Cho SM; Shim J; Cho SH; Kim J; Son BD; Lee JC; Yoon WY ACS Appl Mater Interfaces; 2018 May; 10(18):15634-15641. PubMed ID: 29687989 [TBL] [Abstract][Full Text] [Related]
17. A mini review of current studies on metal-organic frameworks-incorporated composite solid polymer electrolytes in all-solid-state lithium batteries. Le PA; Nguyen NT; Nguyen PL; Phung TVB; Do CD Heliyon; 2023 Sep; 9(9):e19746. PubMed ID: 37809844 [TBL] [Abstract][Full Text] [Related]
18. Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries. Kalaga K; Rodrigues MT; Gullapalli H; Babu G; Arava LM; Ajayan PM ACS Appl Mater Interfaces; 2015 Nov; 7(46):25777-83. PubMed ID: 26535786 [TBL] [Abstract][Full Text] [Related]
19. Janus Quasi-Solid Electrolyte Membranes with Asymmetric Porous Structure for High-Performance Lithium-Metal Batteries. Chen Z; Zhao W; Liu Q; Xu Y; Wang Q; Lin J; Wu HB Nanomicro Lett; 2024 Feb; 16(1):114. PubMed ID: 38353764 [TBL] [Abstract][Full Text] [Related]
20. High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries. Hyun WJ; de Moraes ACM; Lim JM; Downing JR; Park KY; Tan MTZ; Hersam MC ACS Nano; 2019 Aug; 13(8):9664-9672. PubMed ID: 31318524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]